N

O r
Objest\venture”

Pattern and Component
Markup Language (PCML)

Draft 3

LICENSE INFORMATION

This document and its contents are furnished "as is’ for informationa purposes only, and are subject to
change without notice. ObjectVenture Inc. does not represent or warrant that any product or business plans
expressed or implied will be fulfilled in any way. Any actions taken by the user of this document in
response to the document or its contents will be solely at therisk of the user.

OBJECTVENTURE MAKES NO WARRANTIES, EXPRESSED OR IMPLIED, WITH RESPECT TO
THISDOCUMENT OR ITSCONTENTS, AND HEREBY EXPRESSLY DISCLAIMSANY AND ALL
IMPLIED WARRANTIES OF MERCHANTABILITY, HTNESS FOR A PARTICULAR USE OR
NON-INFRINGEMENT. IN NO EVENT SHALL OBJECTVENTURE BE HELD LIABLE FOR ANY
DIRECT, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR
ARISING FROM THE USE OF ANY PORTION OF THE INFORMATION.

Copyright © 2001-2002 by ObjectVenture Inc. All rights reserved.

This document may not be reproduced, photocopied, displayed, transmitted or otherwise copied, in whole
or in part, in any form or by any means now known or later developed, such as eectronic, optical or
mechanica means, without the written agreement of ObjectVenture Inc. Any unauthorized use may be a
violation of domestic or international law.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government and its agents is subject
to the redtrictions set forth in subparagraph (c)(1)(ii) of the Rights in Technica Data and Computer
Software clause at DFARS 252.227-7013.

TRADEMARKS

ObjectVentureis atrademark of ObjectVenture Inc.

Sun, Sun Microsystems, the Sun logo, Java and al Java-based trademarks and logos are trademarks or
registered trademarks of Sun Microsystems, Inc.

All other product or company names mentioned are used for identification purposes only, and may be
trademarks of their respective owner.

If you have any comments concerning this document or software, please forward them to:

ObjectVenture Inc.

89 Main Street

Third Floor

Milford, MA 01757

Internet address:. info@objectventure.com

Table of Contents

ABLE OF CONTENTS

INTRODUCTION 1
CURRENT STATE OF REUSE 2
HOW THIS SPECIFICATION FURTHERS REUSE 3
OVERVIEW 4
PATTERN OVERVIEW 5
COMPONENT OVERVIEW 7
ROLES 9
GENERAL ELEMENTS 11
ENUMERATED TYPES 12
URL 13
AUTHOR 14
VERSION 15
ARTIFACT 16
AKA, KEYWORD 17
PATTERN ELEMENTS 19
PATTERN 20
CONSEQUENCE, CONTEXT, FORCE, PROBLEM 22
SOLUTION 23
PARTICIPANT 24
STRUCTURE, COLLABORATION 25
RELATIONSHIP 26
XML BINDINGS 27
STRATEGY ELEMENTS 28
STRATEGY 29
COMPOSITE STRATEGIES 31
COMPONENT ROLE 31
MAPPING COMPONENT ROLES TO PATTERN PARTICIPANTS 34
ATTRIBUTE ROLE 34
OPERATION ROLE 36
PARAMETER ROLE 38
TAG ROLE 39
TAGATTRIBUTE ROLE 41
CONNECTOR ROLE 41
CONNECTOR END ROLE 43
XML BINDINGS 44

CATALOG ELEMENTS 45
CATALOG 46
XML BINDINGS a7
SCML EXTENSIONSFOR PATTERNS 48
ROLE REFERENCES 49
COLLECTIONS OF ROLES 57
OPERATION ROLE BODIESAND SCML 61
COMPONENT ELEMENTS 63
COMPONENT 64
MAPPING ROLES TO COMPONENTS 65
XML BINDINGS 66
PALETTE ELEMENTS 67
PALETTE 68
XML BINDINGS 69
UML PROFILES 70
PACKAGING REQUIREMENTS 72
EXAMPLES 74
PATTERN AND COMPONENT DESCRIPTORS 76
COMMON ELEMENTSDTD e
PATTERN DTD 83
STRATEGY DTD 89
CATALOG DTD 102
COMPONENT DTD 106
STRATEGY INSTANCE DTD 108

PALETTEDTD

OVERVIEW

Introduction

The current state of software reuse and how this
specification furthers reuse

Contents

Current state of reuse

How this specification furthers reuse

OVERVIEW

Current state of reuse

Companies around the world are engaged in object-oriented and component-based
development but are failing in their quest to reuse the components that they and
others have created. The problem is that developers can create components
themselves, but when they attempt to pass their work onto others, there is no
standard mechanism for having the component describeitsalf, what it is designed to
do, how it collaborates with other components and how its functionality may be
extended. Developers who would benefit by leveraging an existing component find
themselves tracking down the original producer to find out its inner workings. And
after trudging through such along exercise, often the component conflicts in some
way with their needs.

A growing trend in software development is the emergence of patterns at multiple
levels of abstraction and in multiple domains of knowledge. Patterns provide away
for system architects to convey best practices and design strategies to other
architects and software developers that must build flexible and scaable software
systems. In short, they further the idea of software design reuse.

Patterns are currently documented and exchanged using one of several smple plain
text templates, diagrams and example code. However, this method isless than idedl.
For patterns to be truly useful as a medium of reuse, approachable and available in
the genera software development community, the following issues must be
addressed:

= Evenif one standard template existed, the legp from atextua description to
aconcrete design is enough to discourage many from effectively leveraging
patterns.

» Thetemplatesthat do exist are mostly textual and do not lend themselves to
tool automation.

= Mog templates offer no consgstent mechanism for realizing multiple
strategies of the same pattern.

= Although the concept of a pattern cataog exigts, there is no standard way of
describing one.

= There is currently no standard way to describe a component’s role in
patterns.

Petterns and components share the following needs, which are not yet fully
addressed in a standard way:

OVERVIEW

= Ownership, which includes a clear statement of intellectua property rights
and licensing guidelines.

= Versoning, which is addressed by some component standards, but not by
al and not in astandard way.

» Reference or inclusions of externa artifacts that further describe the pattern
or component.

= A mechanism for cataoging and packaging a number of patterns or
components.

How this specification furthers reuse

This specification allows patterns at any level of abstraction to be expressed in a
tangible, standard format. By leveraging the openness and flexibility of XML, this
technology enables architects and developers to easily and effectively describe,
package, exchange and extend their own patterns as well as those created by others.
At the same time, tool and repository providers are empowered to automate much
of this process.

This specification is amed squarely at providing robust and intelligent tools for
pattern-driven development of software frameworks and applications. It provides an
explicit mechanism for describing how components participate in patterns, thereby
showing the author’s intent and easing the road to maintenance and reuse.
Components become salf-describing and application assembly much smpler.

OVERVIEW

Overview

Provides a high-level description of the pattern and
component metamodel

Contents
Pattern Overview 5
Component Overview 7

Roles 9

OVERVIEW

Pattern Overview

Patterns have a number of characteristics, some of which the pattern metamodel
outlined in this specification must explicitly support:

= Patterns capture proven, reusable designs and implementations that aid in
the prevention of unnecessary reinvention.

= Paterns often represent best practices that have been mined from the
collective experience of the software devel opment community.

= Patterns describe component collaborations that provide solutions to
problemsin agiven context.

= Paternsexist at multiple levels of abstraction.
= Patterns address both functional and non-functional requirements.

= Paterns are arguably the most useful to system architects and developers
when used in combination to solve complex, recurring problems.

While preserving the widdly used context-problem-solution form of patterns that is
often rooted in a textua description, the authors of this specification recognize the
need for a more robust description of patterns to meet the characteristics
enumerated above and in the previous chapter. A smplified graphic of the resulting
metamode is provided in Figure 1.

Pattern

Catalog

organizes / relates

realizes

composed of

Figure 1: Overview of Pattern Metamodel

OVERVIEW

Each one of these eements is summarized below. A detailed explanation of each is
provided in later sections.

Catalog

A side effect of documenting patterns is the outgrowth of a common language used
to communicate their use. So ingead of routingly getting mired down in details
when trying to express a solution to a problem, just mentioning the names of certain
patterns immediately conveys a deep description of a solution. This common
language serves as a catalyst for more productive design discussions and knowledge
transfer among architects and devel opers.

This notion of a common language is composed of domain-specific subsets
commonly referred to as pattern catalogs. We adopt that term here as part of the
pattern metamodel and assign to it the following functions:

= Catdogs are a grouping mechanism for a number of related patterns and
their strategies. Although patterns are usually grouped within a domain, a
catalog does not restrict groupings that span multiple domains,

= Cataogs provide asimple means of pattern classfication.
= Catdogsfacilitate the packaging and reuse of patterns and their strategies.

= A catalog may be composed of other catalogs.

Pattern

A pattern is a somewhat generic description of a solution provided to address one or
acommon set of design problemsin a certain context. This specification recognizes
a pattern as just that with no direct implementation details. In this sense, it serves as
a class of solutions. The details of a particular solution are captured in a strategy,
which isdiscussed | ater.

A pattern, then, is assigned the following functions:

= A pattern defines a context, a problem and a general solution. A solution
here is an abdtract description that is not tied to any particular
implementation.

= A pattern defines participants and describes how they interact to provide a
solution.

= A pattern may reference other patterns or externa artifacts.

OVERVIEW

= Some patterns are not amenable to solutions that may be implemented.
Therefore, a pattern is not required to have any strategies.

Strategy

Since patterns describe generd solutions to problems, there is dmost aways more
than one way to redize each one of them in software systems. Pattern authors
usudly include code samples and maybe even a complete example of at least one
solution to aid in the use of a pattern.

We take a dightly different approach here by removing implementation details
from the pattern itsalf and codifying them in a Strategy. Each pattern may have
multiple Strategies, each of which defines one implementation of a pattern solution.
A pattern isn't directly aware of its strategies because we do not wish to limit the
number of drategies available and the association of them to a pattern at just
creation time. It is conceivable that people other than the original author may later
discover new strategiesfor applying a pattern.

A drategy, then, is assigned the following functions:

= A drategy may define one of many possible implementations of a pattern
solution.

= A drategy defines one or more roles that may be mapped to concrete
components and their elements.

= A drategy provides a mechanism for constraining which components and
elements may fill each role.

= Patterns are often composed of other patterns. A strategy addresses this
“pattern nesting” by being composed of other strategies. This scalability
allows the description of large component collaborations or frameworks.

= A drategy is not required to be associated with a pattern. It may instead
serve asabuilding block for other strategies or as an idiom.

Component Overview

The representation of a component and a mechanism for organizing a set of themis
necessary for this specification to address the needs listed in the previous chapter. A
smplified graphic of the resulting metamodel is provided in Figure 2.

OVERVIEW

Palette

organizes

maps to
Strategy
0.* 1.*

Figure 2: Overview of Component Metamodel

Each one of these elementsis summarized below. A detailed explanation of each is
provided in later sections.

Palette

The notion of apaetteiswidely used for organizing user interface components and,
to a much lesser extent, business components. We adopt the term here and use it to
provide a ssmple means of classification and organization. A paette is assigned the
following functions:

= Pdettes are agrouping mechanism for anumber of related components.
= Pdettes provide asmple means of component classification.
= Pdettesfacilitate the packaging and reuse of components and frameworks.

= A paette may be composed of other palettes.

Component

Pattern strategies describe a collaboration of components that provide asolutionto a
problem or that address a certain need (as described by a pattern). This specification
does not attempt to describe components themsealves, because that has already been
done with some degree of success. It does describe how patterns and components
interact.

A component, then, is assigned the following functions:

= A component may fill one or more pattern strategy roles in isolation or as
part of any number of component collaborations.

OVERVIEW

= A component can describe who its author is, what version itis, what it does,
and how it may be used.

Roles

This specification defines five distinct roles in the development of software
applications using patterns and components. Each of these roles adheres to a
contract that ensuresits product is compatible with the others.

The packaging requirements for each role are defined in Chapter 11: Packaging
Requirements.

Pattern Provider

The Pattern Provider is the producer of patterns. Thisindividua party isresponsible
for codifying a genera solution to one or more related problems in a well-defined
context. Documenting patterns is a difficult process that is typicaly the place of an
experienced architect of software syssemswho is able to leverage that experience to
identify and effectively communicate candidate patterns.

A pattern solution may have one or more different implementations, each of which
the Pattern Provider describes with a strategy. Strategies are commonly discovered
over time as a pattern is used in different Stuations and by different people. In this
case, the provider may choose to extend existing patterns created by another party
by adding one or more additional strategies.

The Pattern Provider may hierarchically organize or classify a number of related
patterns using catalogs. Descriptions may aso be provided for common
associ ations between patternsthat aid in their use together.

The Pattern Provider’s output generally conssts of catadog JARS, which include
catalog descriptor files, pattern descriptor files and a strategy descriptor file for each
strategy the provider wishesto include for a pattern (optiona). These descriptors are
required to have‘.catalog,’ ‘.pattern’” and ‘ .strategy’ extensions respectively.

Component Provider

The Component Provider is the producer of components. This individual party is
responsible for creating components and packaging them according to any
guidelines that exigt for the chosen implementation technology. For example, the

OVERVIEW

congtruction and packaging of an Enterprise JavaBean™ (EJB™) should be donein
compliance with the EJB specification.

In addition to the component itself, the Component Provider's output is a
component descriptor that must be packaged with the component. The extension of
this descriptor file must be ‘.component.” One descriptor for each component
interface that is implemented by the component should aso be included. If a
particular component standard does not support packaging viaJAR or ZIP archives,
then a pal ette may be used for packaging purposes.

The Component Provider may hierarchically organize or classfy a number of
related components using palettes. Each palette is smply a logical container of
components, which itself may be nested in another palette.

Tool Provider

The Tool Provider is the producer of tools that leverage this specification to
automate the creation, exchange and use of patterns, components and frameworks.

Marketplace Provider

The Marketplace Provider is the producer of public and private marketplaces or
repositories for the express purpose of mining, organizing, and exchanging patterns,
components and frameworks.

Application Assembler

The Application Assembler is the producer of applications created using
prepackaged patterns and components.

10

GENERAL ELEMENTS

General Elements

Provides a detailed specification of general
elements used throughout the metamodel
Contents

Enumerated Types

URL

Author

Verson

Artifact

AKA, Keyword

12
13
14
15
16
17

11

GENERAL ELEMENTS

Enumerated Types

The following enumerated types are commonly used throughout this specification,
s0 we define them here to avoid duplication.

Boolean

A Boolean type represents one of two truth-values, True or False. Any attribute of
this type may have any one of the following vaueslisted in Table 1.

Table 1: Boolean Enumerated Type Values

Value Description

true The attribute has a truth-value of True.
fase The attribute has a truth-value of False.
yes The attribute has a truth-value of True.
no The attribute has a truth-value of False.
Access

An Access type represents the vighility of an element to the outside world. Any
attribute of thistype may have any one of the following valueslisted in Table 2.

Table 2: Access Enumerated Type Values

Value Description

public The element the attribute representsis visible to any other element that
may reach it.

private The element the attribute representsis only visible to that element’s
internals.

protected The element the attribute representsis visible to that element’ s internals

and to other elements it has a relationship with (including sub-elements).

12

GENERAL ELEMENTS

Aggregation

An Aggregation type represents the nature of a relationship between two eements.
Any attribute of this type may have any one of the following vaues listed in Table
3.

Table 3: Aggregation Enumerated Type Values

Value Description

composition The source element is composed of and owns the target element in the
relationship and is responsible for its lifecycle.

aggregation The source element is composed of, but does not own, the target element
in the relationship.

none This value must be used for both ends of a peer-level relationship, where

neither element is composed of the other. It must also be used for the
target of a composition or aggregation relationship.

Mutability

A Mutability type represents the changeability of an element. Any attribute of this
type may have any one of thefollowing valueslisted in Table 3.

Table 4: Mutability Enumerated Type Values

Value Description

read The element the attribute represents may be queried but not changed.
read-write The element the attribute represents may be queried and changed.
URL

A URL dement represents a link with a friendly display name. It may be used to
represent an email address, a web page, etc. The attributes of a URL are defined in
Table5.

13

GENERAL ELEMENTS

Table 5: Email Attributes

Value Type Required Description

display-name String No A display name or friendly label for the
URL

address String Yes The actual URL

Author

An author represents the creator of a pattern, component, artifact, etc. and isused to
provide ownership. An author is defined by the attributes and associations
enumerated in Table 6 and Table 7 respectively.

Table 6: Author Attributes

Value Type Required Description

name String Yes Name of the author

organization String No Organization the author represents. If
the name is an actual organization, then
this attribute may be omitted.

description String Yes Description of the author

Table 7: Author Associations

Element Cardinality Required Description

URL 0.* No A URL where information pertaining to
the author, his organization, or his
works may be obtained. This may also
represent an email address.

A graphic representation of an author’s association with other elements is provided
inFigure 3.

14

GENERAL ELEMENTS

Figure 3: Author Associations

Version

A version represents the state of development an element is at. Its primary purpose
isto distinguish multiple revisons of the same element.

A version is defined by the attributes and associations enumerated in Table 8 and
Table 9 respectively.

Table 8: Version Attributes

Value Type Required Description

revision String Yes Version number

date String Yes Date/time of therevision

description String No Description of the revision

copyright String No Copyright notice for the revision.

release-notes String No Notes that describe important aspects of
therevision

license String No Licensing information for the revision.

Table 9: Version Associations

Element Cardinality Required Description

Artifact 0.* No External documents or other resources
that further describe the revision

A graphic representation of a verson’'s association with other elementsis provided
inFigure 4.

15

GENERAL ELEMENTS

Artifact

An artifact represents an externa file that may not be appropriately supplied in the
XML form defined in this specification. It helpsto further describe what a particular
element represents or ingtruct in its use. Examples of an artifact include a UML
diagram (binary or XMl), agraphica image, documentation, etc.

An artifact is defined by the attributes and associations enumerated in Table 10 and

Table 11 respectively.

Table 10: Artifact Attributes

Value Type Required
name String Yes

type String No
description String No

Table 11: Version Associations

Element Cardinality Required
Author 0.* No
URL 1. Yes
Version 1 No

Description

Name of the artifact

File type of the artifact, which should be
represented by a common file extension

(i.e. html, doc, mdl)

Description of the artifact

Description

An author of the artifact

Location of the artifact in the form of a
URL, which may be either relative or

absolute

Version information for the artifact

A graphic representation of a verson’s association with other elements is provided

in Figure4.

16

GENERAL ELEMENTS

created by)
Author Artifact - T
0.* 0.* 1

located at

Figure 4: Artifact Associations

AKA, Keyword

An AKA represents another name for a pattern, strategy or component, while a
keyword is a single word or phrase that serves to classfy a pattern, Strategy or
component.

Both of these eements are defined by the attributes and associations enumerated in
Table 12 and Table 13 respectively.

Table 12: AKA, Keyword Attributes

Value Type Required Description

name String Yes The aternate name or keyword.

Table 13: AKA, Keyword Associations

Element Cardinality Required Description

Component 1 Yes Component that is being classified or
given another name

Pattern 1 Yes Pattern that is being classified or given
another name
Strategy 1 Yes Strategy that is being classified or

given another name

17

GENERAL ELEMENTS

A graphic representation of the relationship of an AKA and keyword to other
elementsisprovided in Figure 5.

—

also known as classified by

Figure 5: AKA, Keyword Associations

18

PATTERN ELEMENTS

Pattern Elements

Provides a detailed specification of patterns

Contents

Pattern

Conseguence, Context, Force, Problem
Solution

Participant

Structure, Collaboration

Relationship

XML Bindings

20
22
23
24
25
26

27

19

PATTERN ELEMENTS

Pattern

A pattern is a somewhat generic description of a solution provided to address one
or a common set of problems in a certain context. Although a pattern describes a
solution, it does not put any constraints on how that solution may be redized. A
pattern may; however, describe how it relates to other patterns and even how it may
be composed of other patterns. In this way, the abstract nature of patterns is
preserved while the realization of solutions and idiomsis reserved for strategies.

A pattern is defined by the attributes and associations enumerated in Table 14 and

Table 15 respectively.

Table 14: Pattern Attributes

Value Type Required
namespace String Yes

name String Yes
abstraction String No
domain String No

Table 15: Pattern Associations

Element Cardinality
AKA 0.*
Artifact 0.*
Author 0.*
Catalog 0.
Consequence 0.*

Default

Description

A space within which the pattern
name must be unique

Name of the pattern

Abstraction level of the pattern,
which may include such descriptions
as“Architectural” or "Design”

Domain the pattern is particularly
well suited for or intended for, which
may include such descriptions as
"Financial," "Telecommunication,"
"Medical," etc.

Required Description

No

No

No

No

No

Another name for the pattern

An external resource that further
describes the pattern

An author of the pattern
Organizes the pattern among others

A consequences of the pattern's use

20

PATTERN ELEMENTS

Element Cardinality Required Description

Context 1 Yes Environment of the pattern

Force 1.* Yes A motivation of the pattern

Keyword 0..* No A categorization or classification of the
pattern

Pattern 0.* No A related pattern

Problem 1 Yes Problem solved by the pattern

Solution 1 Yes Solution to the problem provided by
the pattern

Strategy 0.* No An implementation of the pattern
solution

Version 1 Yes Version information for the pattern

A graphic representation of a pattern’s association with other eements is provided
inFigure 6 and Figure 7.

Problem
1 1.* 1
motivated by

pros/cons

classified by

0..*

Figure 6: Pattern Associations, Part 1

0..*

21

PATTERN ELEMENTS

Catalog

realizes

Author Relationship

1

L
i 0.* references
1

}

}

' references
0.% |

m
Figure 7: Pattern Associations, Part 2

Consequence, Context, Force, Problem

A consequence represents a pro or con of pattern usage. It describes how a pattern
supportsits objectives and the trade-offsin doing so.

A context represents the environment within which a pattern describesitself andisa
general motivation for its existence.

A force represents a motivation of a pattern. It essentially amplifies the problem a
pattern istrying to address and then serves as a congtraint on the solution.

A problem represents a design need that is to be addressed by a pattern. It
essentially distinguishes the use of one pattern over another.

All four of these eements are defined by the attributes and associations enumerated
in Table 16 and Table 17 respectively.

22

PATTERN ELEMENTS

Table 16: Consequence, Context, Force, and Problem Attributes

Value Type Required Default Description

description String Yes -- Description of the force, problem or
conseguence

summary String No -- A title or brief overview of the
description

Table 17: Consequence, Context, Force, and Problem Associations

Element Cardinality Required Description

Pattern 1 Yes Parent pattern

A graphic representation of these elements and their association with others is
provided in Figure 6.

Solution

A solution solves the problem described in a pattern. It is composed of a number of
participants and defines the static structure and dynamic interactions of them.

A solution is defined by the attributes and associations enumerated in Table 18 and
Table 19 respectively.

Table 18: Solution Attributes

Value Type Required Default Description

description String Yes -- Description of the solution

summary String No -- A title or brief overview of the
description

Table 19: Solution Associations

Element Cardinality Required Description

23

PATTERN ELEMENTS

Element Cardinality Required Description

Collaboration 1 Yes Dynamic interactions found in the
solution

Participant 0.* No A distinct role played by a component
in the solution

Structure 1 Yes Static structure of the solution

A graphic representation of a solution’s association with other elementsis provided
inFigure 8.

Component

Pattern Role

1/strategy

provides a fulfills role of

behavior of roles of

references

references
--------------- Structure

Figure 8: Solution Associations

Participant

A participant represents a distinct role played by a component in the pattern
solution. Each participant describes its general characteristics but does not place any
constraints on how it may be realized.

A participant is defined by the attributes and associations enumerated in Table 20
and Table 21 respectively.

24

PATTERN ELEMENTS

Table 20: Participant Attributes

Value Type Required Default Description

name String Yes -- Name of the participant, which must
be unigue among the others

description String No -- Description of the participant and its
rolein the solution

required Boolean No true Determines whether or not this

participant is required to complete
the solution

Table 21: Participant Associations

Element Cardinality Required Description

Component Role 0.* No A component role in a pattern strategy
that fulfills the role of the participant in
the pattern solution

Solution 1 Yes Parent solution that the structure or
behavior describes

A graphic representation of a participant’s association with other elements is
provided in Figure 8.

Structure, Collaboration

A gructure represents the dtatic interaction of participants (as in a UML class
diagram), while a collaboration represents the dynamic interaction of participants
(asinaUML sequence or collaboration diagram).

Both are defined by the attributes and associations enumerated in Table 22 and
Table 23 respectively.

Table 22: Structure, Collaboration Attributes

Value Type Required Default Description
description String Yes -- Description of the structure or
collaboration

25

PATTERN ELEMENTS

Table 23: Structure, Collaboration Associations

Element Cardinality Required Description

Artifact 0.* No An externa artifact that may be
referenced to further the description
(i.e. UML diagrams).

Solution 1 Yes Parent solution that the structure or
collaboration describes

A graphic representation of the relationship of a structure and collaboration to other
elementsisprovided in Figure 8.

Relationship

A relationship represents arelationship between two patterns. A pattern relationship
is purely descriptive, but it does have an attribute that specifies what type of
relationship it is. This element would be used to refer to alike pattern or to describe
a pattern nesting.

A reationship is defined by the attributes and associations enumerated in Table 20
and Table 21 respectively.

Table 24: Relationship Attributes

Value Type Required Default Description

summary String Yes -- A short phrase that describes the
related pattern

description String No -- Description of how the two patterns
arerelated

type String No “reference’” Defines the type of relationship. The

following values are possible:

= |like— both patterns are similar
in one way or another

= nest —related pattern is nested
inthisone

= reference —asimple reference

26

PATTERN ELEMENTS

Value Type Required Default Description

to another pattern

Table 25: Relationship Associations

Element Cardinality Required Description

Pattern 0.* No Parent pattern

A graphic representation of a relationship’s association with other eements is
provided in Figure 8.

XML Bindings

Each pattern is represented with an XML descriptor that has the “.pattern” file
extenson. The DTD for this descriptor is provided in Pattern and Component
Descriptors. Files based on this DTD will typicaly be placed in a cataog JAR.
Packaging requirements for this descriptor are discussed in more detal in
Packaging Requirements.

27

STRATEGY ELEMENTS

Strategy Elements

Provides a detailed specification of pattern

strategies

Contents

Strategy

Composite Strategies
Component Role

M apping Component Roles to Pattern Participants
Attribute Role
Operation Role
Parameter Role

Tag Role

Tag Attribute Role
Connector Role
Connector End Role

XML Bindings

29
31

31

S S

36
38
39

41

28

STRATEGY ELEMENTS

Strategy

A drategy represents one of many possible implementations of a pattern solution, a
building block for other strategies or an idiom. It serves as a bridge from the more
abstract notion of a pattern to the more rigid world of components. A strategy can
describe the design of a single component or a large framework of components. A
srategy is role based, and each role defines restrictions on any component or
element that may fill it. It is this role-based mechanism that gives strategies their
greatest value; reuse of adesign (which the strategy codifies) is gained by plugging
in different components and elementsin each role.

A grategy is defined by the attributes and associations enumerated in Table 26 and
Table 27 respectively.

Table 26: Strategy Attributes

Value Type Required Default Description

namespace String Yes -- A space within which the strategy
name must be unique

name String Yes -- Name of the strategy

description String No -- Description of the strategy

Table 27: Strategy Associations

Element Cardinality Required Description

AKA 0.* No Another name for the strategy

Artifact 0.* No External resources that further describe
the strategy

Author 0.* No An author of the strategy

Catalog 0.* No Organizes the strategy with other
strategies and patterns

Component Role 0.* No A rolefilled by a component

Connector Role 0.* No A rolefilled by arelationship between

two components

29

STRATEGY ELEMENTS

Element Cardinality Required Description

Keyword 0.* No A categorization or classification of the
strategy

Pattern 0.1 No The pattern for which the strategy
provides an implementation to its
solution

Strategy 0.* No Another strategy from which thisoneis
composed

Version 1 Yes Version information for the strategy

A graphic representation of a strategy’ s association with other elements is provided
in Figure 9 and Figure 10.

Catalog

references
constrained by

Component Connector
Role Role

Figure 9: Strategy Associations, Part 1

30

STRATEGY ELEMENTS

O“*

created by classifies

0..* 0.* 0.*

1

Figure 10: Strategy Associations, Part 2

Composite Strategies

A drategy may be composed of its own roles and any number of other strategies.
The roles of the other strategies then become a part of the composite strategy. This
mechanism provides the following benefits:

= Redundancy among strategies is removed. Duplicate roles among strategies
may be factored out into a separate strategy.

= A component role from a nested strategy may be linked to a pattern
participant that the composite strategy had not yet fulfilled. This is the
mechanism through which pattern nesting is achieved.

Component Role

A component role represents a plug-in point in a strategy for acomponent. Therole
specifies an interface, so to speak, that acomponent must satisfy to fill therole. Any
number of components may be swapped in and out of each component role, aslong
asthey adhere to the specified interface.

A component role defined by the attributes and associations enumerated in Table 28
and Table 29 respectively.

31

STRATEGY ELEMENTS

Table 28: Component Role Attributes

Value Type Required Default
name String Yes --
description String No --
stereotype String No --
is-interface Boolean No false
multiplicity String No 1
required Boolean No true

Table 29: Component Role Associations

Element Cardinality Required
Attribute Role 0.* No
Component Role 0.1 No

Description
Name of the component role
Description of the component role

Defines the type of component the
component role may be mapped to (see
UML Profiles for more information)

Restricts the mapping of this
component role to component
interfaces only

Allowstheroleto befilled by more
than one component. Thisisuseful in
patterns like Abstract Factory, where
the concrete factory role will be
mapped to multiple components.

The following values are available:
=1 -One
= # - Any whole number > 1
= * - Many or more than one
Determines whether or not this

component role is required to be filled
when a strategy is mapped

Description
Child attribute role

An inheritance relationship with
another component role. Both roles
must have the same value for is-
interface.

If the component that fills this
component role is composed of asingle
class, then it isrequired to subclass the
component that fills the parent
component role.

32

STRATEGY ELEMENTS

Element Cardinality Required Description

Component Role 0.* No Interfaces that this component role
implements. The associated component
roles must have is-interface set to true.

Connector End Role 0.* No Component role participates in one end
of aconnector role

Operation Role 0.* No Child operation role

Participant 0.* No A pattern participant that is fulfilled by
the component role

Strategy 1 Yes Parent strategy

Tag Role 0.* No Child tag role

A graphic representation of a component role' s association with other dements is
provided in Figure 11 and Figure 12.

Strategy

constrained by

Connector
End Role

Participant

1/strategy

Attribute Operation
Role Role

Tag Role

Figure 11: Component Role Associations, Part 1

33

STRATEGY ELEMENTS

extends

VH
Ll Component
I Role

implements

Figure 12: Component Role Associations, Part 2

Mapping Component Roles to Pattern
Participants

If astrategy is providing an implementation for a pattern solution, then each pattern
participant must be linked to a strategy component role. There may be more
component roles in a strategy than there are pattern participants, so the converseis
not true. This participant-role binding provides linkages between a pattern and one
of its solution strategies. Not only does this mechanism show how a strategy relates
to apattern; it also shows how patterns nest (see Composite Srategies).

Attribute Role

An attribute role represents an attribute of a component. Each attribute role that is
defined further restricts the components that a component role may be mapped to.
Each required attribute role must be mapped to a valid attribute before the strategy
is properly implemented.

An atribute role is defined by the attributes and associations enumerated in Table
30 and Table 31 respectively.

Table 30: Attribute Role Attributes

Value Type Required Default Description
name String Yes - Name of the attribute role
type String No -- Type that an attribute must be to

satisfy the attribute role. Examples of
Javatypesinclude “java.lang.String"
and "boolean.”

The type may be represented using a

34

STRATEGY ELEMENTS

Value Type Required Default Description

SCML substitution (see SCML
Extensions for Patternsfor more

information).
description String No -- Description of the attribute role
visibility Access No public Visibility that an attribute must have to

satisfy the attribute role. For example,
if the attribute role specifies avisibility
of "public," then it may only be
mapped to a public attribute.

static Boolean No fase Determines whether or not the attribute
that the attribute role is mapped to
must belong to a component or an
instance. For example, an attribute role
with static set to "true” may not be
mapped to an attribute that is owned by
an instance.

constant Boolean No false Determines whether or not the attribute
that the attribute role is mapped to
must be a constant. For example, an
attribute role with constant set to "true"
may not be mapped to a mutable
attribute.

multiplicity String No 1 Allowstheroleto befilled by more
than one attribute. Thisis useful in
patterns like Value Object, where the
role representing data will be mapped
to multiple attributes.

The following values are available;
=1 -One
= # - Any whole number > 1
= * - Many or more than one
required Boolean No true Determines whether or not this
attribute role is required to be mapped

when its parent component roleis
mapped to a component

Table 31: Attribute Role Associations

Element Cardinality Required Description

35

STRATEGY ELEMENTS

Element Cardinality Required Description

Component Role 1 Yes Parent component role.

A graphic representation of an attribute role's association with other elements is
provided in Figure 11.

Operation Role

An operation role represents a method of a component. Each operation role that is
defined further restricts the components that a component role may be mapped to.
Each required operation role must be mapped to a valid method before the strategy
is properly implemented.

An operation role is defined by the attributes and associations enumerated in Table
32 and Table 33 respectively.

Table 32: Operation Role Attributes

Value Type Required Default Description
name String Yes - Name of the operation role
stereotype String No -- Defines the type of method the

operation role may be mapped to (see
UML Profiles for more information)

description String No -- Description of the operation role

body String No -- Content of an operation role's body. It
may contain source code, Source Code
Macro Language (SCML), or a
combination of both (see SCML
Extensions for Patterns for more
information).

visibility Access No public Visihility that a method must haveto
satisfy the operation role. For example,
if the operation role specifiesa
visibility of "public", then it may only
be mapped to a public method.

static Boolean No false Determines whether or not the method
that the operation role is mapped to
must belong to a component or an

36

STRATEGY ELEMENTS

Value Type Required Default

return-type String No --

multiplicity String No 1

required Boolean No true

Table 33: Operation Role Associations

Element Cardinality Required
Component Role 1 Yes
Parameter Role 0.* No

Description

instance. For example, an operation
role with static set to "true" may not be
mapped to a method that is owned by
an instance.

Return type that a method must haveto
satisfy the operation role. For example,
an operation role with areturn type set
to "boolean" may not be mapped to a
method with areturn type of "int" or
one that has no return type.

The return-type may be represented
using an SCML substitution (see
SCML Extensions for Patterns for
more information).

Allowstherole to befilled by more
than one method. Thisisuseful in
patterns like Factory Method, where
the actual factory method may be
mapped to multiple methods.

The following values are available;

=1 -Orne

= # - Any whole number > 1

= * - Many or more than one
Determines whether or not this
operation role is required to be mapped

when its parent component roleis
mapped to a component

Description
Parent component role

Arguments that define part of the
operation role’ s signature. The list of
parameter roles may be ordered or
unordered.

37

STRATEGY ELEMENTS

A graphic representation of an operation role's association with other elements is
provided in Figure 13.

Operation PEUSIEHEMISIN Component
Role o Role

constrained by

Parameter
Role

Figure 13: Operation Role Associations

Parameter Role

A parameter role represents a parameter of a method. Each parameter role that is
defined further restricts the methods that the operation role may be mapped to. Each
parameter role must be mapped to a valid parameter before the strategy is properly
implemented.

A parameter role is defined by the attributes and associations enumerated in Table
34 and Table 35 respectively.

Table 34: Parameter Role Attributes

Value Type Required Default Description
name String Yes -- Name of the parameter role
type String Yes -- Type of the parameter role. Examples

of Javatypesinclude “boolean” and
"javalang.String."

The return-type may be represented
using an SCML substitution (see
SCML Extensions for Patterns for
more information).

constant Boolean No false Determines whether or not the
parameter that the parameter roleis
mapped to must be a constant. For
example, a parameter role with
constant set to "true" may not be

38

STRATEGY ELEMENTS

Value Type Required Default Description
mapped to a mutable parameter.
description String No -- Description of the parameter role

Table 35: Parameter Role Associations

Element Cardinality Required Description

Operation Role 1 Yes Parent operation role

A graphic representation of a parameter role's association with other elements is
provided in Figure 13.

Tag Role

A tag role represents atag in amarkup component (e.g. HTML, JSP). Each tag role
that is defined further restricts the components that the component role may be
mapped to. Each tag role must be mapped to a vaid tag before the strategy is
properly implemented.

A tag role is defined by the attributes and associations enumerated in Table 36 and
Table 37 respectively.

Table 36: Tag Role Attributes

Value Type Required Default Description

name String Yes -- Name of thetag role

description String No -- Description of the tag role
stereotype String No -- Defines the type of tag the tag role

may be mapped to (see UML Profiles
for more information)

prefix String No -- Default tag library prefix (for JSPs) or
anamespace

tag-name String No -- Literal name of thetag

multiplicity String No 1 Allowstheroleto befilled by more

than AnA tan

39

STRATEGY ELEMENTS

Value Type

required Boolean No

Table 37: Tag Role Associations

Element Cardinality
Component Role 1

Tag Attribute 0.*

Tag Role 0.*

Required Default

true

Required
Yes
No

No

Description

than one tag

The following values are available:
=1
" #

m *

- One
- Any whole number > 1

- Many or more than one
Determines whether or not thistag role
isrequired to be mapped when its

parent component roleis mapped to a
component

Description
Parent component role
An attributes of the tag

Nested tag roles

A graphic representation of atag role' s association with other elements is provided

in Figure 14.

constrained by

j=

constrained by

ag Role

0..*

properties of

Tag
Attribute

Figure 14: Tag Role Associations

Component
L Role

40

STRATEGY ELEMENTS

Tag Attribute Role

A tag attribute role represents a markup tag attribute. Each tag attribute role that is
defined further restricts the markup tags that the tag role may be mapped to. Each
tag attribute role must be mapped to a valid tag attribute before the strategy is
properly implemented.

A tag attribute is defined by the attributes and associations enumerated in Table 38
and Table 39 respectively.

Table 38: Tag Attribute Attributes

Value Type Required Default Description

name String Yes -- Name of the tag attribute

value String Yes -- Vaue of the tag attribute

constant Boolean No false Determines whether or not the tag

attribute that the tag attribute roleis
mapped to must be a constant. For
example, atag attribute role with
constant set to "true" may not be
mapped to a mutable tag attribute.

description String No - Description of the tag attribute role

Table 39: Tag Attribute Associations

Element Cardinality Required Description

Tag Role 1 Yes Parent tag role

A graphic representation of a tag attribute’s association with other elements is
provided in Figure 14.

Connector Role

A connector role represents a binary relationship between components. Each
connector role has two end roles that must both be attached to a component role.
Each connector role must be mapped to a valid relationship before the strategy is
properly implemented.

41

STRATEGY ELEMENTS

A connector role is defined by the attributes and associations enumerated in Table
40 and Table 41 respectively.

Table 40: Connector Role Attributes

Value Type Required Default Description

name String Yes -- Name of the connector role.
description String No -- Description of the connector role.
required Boolean No true Determines whether or not this

connector roleisrequired to befilled
when a strategy is mapped

Table 41: Connector Role Associations

Element Cardinality Required Description
Connector End Role 2 Yes Connector ends
Pattern Strategy 1 Yes Parent strategy

A graphic representation of a connector role's association with other elements is
provided in Figure 15.

constrained by
Strategy Connector
or Role

constrained by

Component targets Connector
Role L os End Role

Figure 15: Connector Role Associations

42

STRATEGY ELEMENTS

Connector End Role

A connector end role represents one end of a binary relationship between
components. Each connector end role further restricts which relationship a
connector role may be mapped to.

A connector end role is defined by the attributes and associations enumerated in
Table 42 and Table 43 respectively.

Table 42: Connector End Role Attributes

Value Type Required Default Description

name String Yes -- Name of the connector end role

description String No -- Description of the connector end
role

multiplicity String Yes - Defines the required number of

component roles for this end of
the connector. The following
multiplicities are allowed:

=1 -One
= # - Any whole number
= 0.1-Zeoor One

= 0.* - Zero to Many

1.* - Oneto Many
= #.#- Any whole number
range

= * - Many

navigable Boolean No false Determines whether or not this
end isvisible to the other

aggregation Aggregation No aggregation Defines the nature of thisend
role's association with the other
one

changeability =~ Mutability No read-write Defines the mutability of the end
role (not of the component role
that fillsit)

visibility Access No public Defines the access other roles
have to this connector end

43

STRATEGY ELEMENTS

Table 43: Connector End Role Associations

Element Cardinality Required Description

Component Role 1 Yes Component role that is the target of the
connector end

Connector Role 1 Yes Parent connector

A graphic representation of a connector end role's association with other elements
isprovided in Figure 15.

XML Bindings

Each drategy is represented with an XML descriptor that has the “.strategy” file
extenson. The DTD for this descriptor is provided in Pattern and Component
Descriptors. Files based on this DTD will typicaly be placed in a catadog JAR.
Packaging requirements for this descriptor are discussed in more detal in
Packaging Requirements.

44

CATALOG ELEMENTS

Catalog Elements
Provides a detail ed specification of pattern catalogs

Contents
Catdog 46
XML Bindings 47

45

CATALOG ELEMENTS

Catalog

A catalog groups a number of related patterns and strategies according to some
criteria. There is no restriction on how they are grouped, o it could be by domain,
company, abstraction level, etc. A catalog serves as the bass for packaging and
exchanging patterns and strategies. The physical structure of a catalog is provided
in Packaging Requirements.

A catdog is defined by the attributes and associations enumerated in Table 44 and
Table 45 respectively.

Table 44: Catalog Attributes

Value Type Required Default Description

namespace String Yes -- A space within which the catalog
name must be unique

name String Yes -- Name of the catalog

description String No - A description of the catalog

Table 45: Catalog Associations

Element Cardinality Required Description

Artifact 0.* No External resources that further describe
the catalog

Author 0.* No An author of the catalog

Catalog 0.* No A catalog may be composed of other
catalogs

Pattern 0..* No Reference to a pattern that is provided
in the catalog

Strategy 0..* No Reference to a strategy that is provided
in the catalog

Version 1 Yes Version information for the catalog

46

STRATEGY ELEMENTS

A graphic representation of a catalog's association with other elements is provided
in Figure 16.

Author

w
croanizes O”*

1
0 * references

~ Strategy

Figure 16: Catalog Associations

XML Bindings

Each catalog is represented with an XML descriptor that has the “.catalog” file
extenson. The DTD for this descriptor is provided in Pattern and Component
Descriptors. Files based on this DTD will typicaly be placed in a cataog JAR.
Packaging requirements for this descriptor are discussed in more detal in
Packaging Requirements.

47

SCML EXTENSIONS FOR PATTERNS :I

SCML Extensions for Patterns

Provides SCML tags used specifically for patterns

Contents
Role References 49
Caoallections of Roles 57

Operation Role Bodiesand SCML 61

48

SCML EXTENSIONS FOR PATTERNS

Role References

The roles defined by a dtrategy often have the need to refer to one another. For
example, an atribute role of one component role may have its type set to that of
another component role. Thisis a difficult matter; since we cannot possibly know
what componentswill ultimately fill the roles of a strategy. What we need, then, isa
way for one role to reference another without loosing the flexibility that patterns
and dtrategies provide.

The Source Code Macro Language (SCML) provides such a solution via its
dynamic subgtitution mechanism. SCML is an XML-based macro language
designed for source code generation. Source codeis created viaa number of SCML
macros, which consist of source code mixed with SCML tags. Many of these tags
are placeholders for substitutions that are made when a client requests that the
macros be expanded. The subsgtitutions are made via reflection from a graph of
property-based objects that the client provides.

The substitution (or placeholder) mechanism is of particular interest here. In our
example above, the attribute role would smply use a placeholder for its type that
references the component role. When the strategy is later mapped to concrete
components, the type of the component that fills the component role will be
subgtituted (when mapping to existing components) or required (when using the
strategy as a component creation template) for the attribute that fills the attribute
role.

This section will define what the substitution mechanism for strategies looks like
and how it can be used. The actual substitution process that must occur during the
mapping of roles takes place via an SCML code generation implementation, as
defined in that specification. We will usethe <s> tag here for referencing onerole
and its properties from another and modify its syntax as necessary.

Modified <s> Tag

Syntax
<scm :s rol e="val ue”>
(strategy el enment) [/ property]

</scnl : s>

49

SCML EXTENSIONS FOR PATTERNS

Wherer ol e must be avaue of t rue or f al se. A value of t r ue is the default
and results in the property being resolved from the pattern strategy itself. A value of
f al se reaults in the property being resolved from the component or component
element that is mapped to the strategy. The (st rat egy el enent) placeholder
will be explained in detail in the following sections.

Component Role References

Syntax

<scm : s>conponent : rol enane[/ property] </scm : s>
or
<scml : s>c: rol enane[/ property] </scm :s>

Where r ol enane is the name of the component role being referenced, and
property isthe component role property being referenced. Any component role
property, as defined in this specification, may be accessed. If no property is
specified, the component role nane property will be used.

Example

Let's say we are filling in the body of an operation role. We have the need of
referring to a component role, named Account , to do some type casting from an
object that we are getting out of a collection. The statement looks like this:

(<scm :s role="fal se”>c: Account</scml : s>) account =
(<scm:s role="fal se”>c: Account</scm :s>)it.next();

When the pattern strategy is mapped, the component that is mapped to the
Account component rolewill have its name substituted. If the name of the mapped
component were MyAccount , the resulting statement in the method that the
operation role is mapped to would look like this:

(MyAccount) account = (MyAccount)it.next();

Constraints

= The properties of a component role (name, Stereotype, etc.) may be
referenced anywhere within an operation role body.

= Thenane property of acomponent role may be referenced from:

50

SCML EXTENSIONS FOR PATTERNS

= Thet ype of ancther attributerole
= Thet ype of aparameter role from an operation role

= Thereturn-type of anoperationrole

Attribute Role References

Syntax

<scm : s>[conponent : rol enane;] attri bute: rol enanme[/ property]
</scm :s>

or
<scm :s>[c:rol enane;] a: rol ename[/ property] </scm : s>

Where rol enane is the name of the attribute role being referenced, and
property is the attribute role property being referenced. Any attribute role
property, as defined in this specification, may be accessed. If no property is
specified, the attribute role nanme property will be used. When an attribute role is
being referenced within the same component role, the prepended component role
nameisoptional.

Example

For our first example, we have one component role that specifies two attribute roles
that are named “frik” and “frak” respectively. The frik role has a type of
javalang.String. Since the frak attribute will ways have the same type as frik, we
st histype using the following placehol der:

<scm:s role="fal se”>attribute: frik/type<scm:s>

or
<scm :s role="fal se”>a: fri k/type<scml : s>

When the component role is mapped to a concrete component, the type of the
attribute that fillsthe frik role will be required for the attribute that fillsthe frak role.
Since both attributes are within the same component role, there is no need to specify
which component role frik belongs to within the <s> tag.

For our second example, we have the same two attribute roles, but now they each
belong to a different component role: “componentA” and *“componentB”
respectively. The same reference would then use the following placehol der:

51

SCML EXTENSIONS FOR PATTERNS

<scm :s role="fal se”>
component : conponent A; attri bute: frik/type

<scm : s>
or
<scm :s role="fal se”>c: conponent A; a: fri k/type<scm : s>

Since both attributes are no longer within the same component role, the component
rolefrik belongs to must be specified within the <s> tag.

Constraints

= The properties of an attribute role (name, type, etc.) may be referenced
anywhere within an operation role body.

= Thet ype property of an attribute role may be referenced from:
= Thet ype of another attribute role

= Thet ype of aparameter role from an operation role

= Thereturn-type of anhoperationrole

Operation Role References

Syntax

<scml : s>[conponent : r ol enane;] oper ati on: rol enane[/ property]
</scm : s>

or

<scm :s>[c:rol enane;] o: rol enane[/ property] </scm : s>

Where rol enane is the name of the operation role being referenced, and
property is the operation role property being referenced. Any operation role
property, as defined in this specification, may be accessed. If no property is
specified, the operation role name property will be used.

52

SCML EXTENSIONS FOR PATTERNS

Example

Let's say we are filling in the body of an operation role. We have the need of
referring to another operation role contained within the same component role. The
name of this other roleisdoSonet hi ng. The statement looks likethis;

<scm :s rol e="fal se”>0: doSonet hi ng</scm : s>();

When the pattern strategy is mapped, the method that is mapped to the
doSonet hi ng operation role will have its name subgtituted. If the name of the
mapped method were pr ocessPaynent , the resulting statement in the method
that the original operation role is mapped to would ook like this:

processPaynent () ;

Constraints

= The properties of an operation role (name, stereotype, etc.) may be
referenced anywhere within an operation role body.

Parameter Role References

Syntax

<scml : s>paraneter:rol enane[/ property] </scni ;s>
or
<scm : s>p: rol enane[/ property] </scnl: s>

Where rol enane is the name of the parameter role being referenced, and
property is the parameter role property being referenced. Any parameter role
property, as defined in this specification, may be accessed. If no property is
specified, the parameter role name property will be used.

Example

Let’'s say we smply wish to print out the value of a parameter that is mapped to a
parameter role namedi d. The statement looks like this:

Systemout.println(<scm:s role="fal se”>p:id</scm:s>);

53

SCML EXTENSIONS FOR PATTERNS

When the pattern strategy is mapped, the parameter that is mapped to the i d
parameter role will have its name subgtituted. If the name of the mapped parameter
were st udent | d, the resulting statement in the method that the operation role is
mapped to would look likethis:

System out. println(studentld);

Constraints
= The properties of a parameter role (name, type, etc.) may be referenced
anywhere within an operation role body.

= Parameter roles may only be referenced within the body of the operational
rolein which they are defined.

Tag Role References

Syntax

<scml : s>t ag: rol enanme[/ property] </scm : s>
or
<scm : s>t:rol enane[/ property] </scnl:s>

Wherer ol enane is the name of the tag role being referenced, and pr operty is
the tag role property being referenced. Any tag role property, as defined in this
specification, may be accessed. If no property is specified, the tag role nanme
property will be used.

Example

TODO

Constraints

= The properties of atag role (name, type, etc.) may be referenced anywhere
within atag role body.

54

SCML EXTENSIONS FOR PATTERNS

Tag Attribute Role References

Syntax

<scm :s>tagAttribute:rol enane[/property]</scmi:s>
or
<scm :s>ta: rol enane[/ property] </scml : s>

Where r ol enane is the name of the tag attribute role being referenced, and
pr oper ty isthetag attribute role property being referenced. Any tag attribute role
property, as defined in this specification, may be accessed. If no property is
specified, the tag attribute role nane property will be used.

Example

TODO

Constraints
= The properties of atag attribute role (name, type, etc.) may be referenced
anywhere within atag role body.

= Tag attribute roles may only be referenced within the body of the tag rolein
which they are defined.

Connector Role References

Syntax

<scml : s>connector:rol enane[/ property] </scni : s>

or
<scm : s>x: rol enane[/ property] </scnl: s>

Where rol enane is the name of the connector role being referenced, and
property is the connector role property being referenced. Any connector role
property, as defined in this specification, may be accessed. If no property is
specified, the connector role name property will be used.

55

SCML EXTENSIONS FOR PATTERNS

Constraints

= The properties of a connector role (name, etc.) may be referenced anywhere
within an operation role body.

Connector End Role References

Syntax

<scml : s>[conponent : r ol enane;] connect or End: r ol enane[/ pr oper
ty] </scm s>

or

<scm : s>[c: rol enane;] xe: rol enane[/ property] </scm : s>

Where r ol enane is the name of the connector end role being referenced, and
pr oper ty isthe connector end role property being referenced. Any connector end
role property, as defined in this specification, may be accessed. If no property is
specified, the connector end role nane property will be used.

Example

Let's say we are filling in the body of an operation role. We have the need of
referring to a connector end role, named Hol di ngs, contained within the same
component role. The statement looks like this:

Col l ection holdings =

get<scm : s rol e="fal se”>xe: Hol di ngs</scm :s>();

When the pattern strategy is mapped, the connector end that is mapped to the
Hol di ngs connector end role will have its name substituted. If the name of the
mapped connector end were St ockHol di ngs, the resulting tatement in the
method that the operation role is mapped to would look like this:

Col I ection hol di ngs = get St ockHol di ngs();

Constraints

= The properties of a connector end role (name, multiplicity, etc.) may be
referenced anywhere within an operation role body.

56

SCML EXTENSIONS FOR PATTERNS

Collections of Roles

Until now, we have only spoken of referencing single-valued properties of pattern
srategy roles. It is possible to access, say, a collection of attribute roles from a
particular component role. What you would do with such a collection will be
discussed in the next section. This section will describe what collections are
available, how to access them and where they may be used.

The collections that are enumerated below have actualy aready been defined in the
pattern metamodel. We are now defining a syntax for accessing them.

Modified <for> Tag

Syntax

<scm :for var="var” property="property” rol e="val ue”>

</scm:for>

The only change here to the SCML <for> tag is the addition of ther ol e attribute,
which isexplained in the Modified <s> Tag section.

Common Constraints

= Collections are only accessible insgde an operation role body as part of an
SCML <f or > tag.

Strategy Collections

A dtrategy is composed of any number of component roles and connector roles.
Both of these collections are avail able through the following SCML substitutions.

Component Role Collection

<scm :for var="var”
property="strategy:this/conmponent Rol es” >

</scm :for>

57

SCML EXTENSIONS FOR PATTERNS

Connector Role Collection

<scm :for var="var” property="s:this/connectorRol es”>

</scm :for>

These subgtitutions produce a collection of component or connector roles from
within the pattern strategy they are accessed from. Inside the <f or > tag, the current
component or connector role can be accessed through thevar attribute.

Connector Role Collections

A connector role is composed of two connector end roles. These collections are
available through the following SCML substitution:

<scml :for var="var”

property="connect or: name/ connect or EndRol es” >

</scm :for>

or

<scnl : for var="var”

property="x: nane/ connect or EndRol es” >

</scm :for>

These substitutions produce a collection of connector end roles. Inside the <f or >
tag, the current connector end role can be accessed through the var attribute. The
target connector is specified by name viathe nane attribute.

Component Role Collections

A component role is composed of any number of operation roles, attribute roles and
tag roles. These collections are available through the following SCML substitutions.

58

SCML EXTENSIONS FOR PATTERNS

Operation Role Collection
<scml : for var="var”

property="conponent : nane/ oper ati onRol es” >

</scm :for>

or

<scml :for var="var”

property="c: nane/ oper ati onRol es” >

</scm :for>

Attribute Role Collection
<scnl : for var="var”

property="conponent: nanme/attri buteRol es” >

</scm:for>

or

<scnml :for var="var”

property="c: nane/ attri but eRol es” >

</scm:for>

Tag Role Collection
<scnl : for var="var”

property="conponent: narme/t agRol es” >

59

SCML EXTENSIONS FOR PATTERNS

</scm :for>
or
<scnml :for var="var”

property="c: nane/t agRol es” >

</scm :for>

Connector End Role Collection
<scnl :for var="var”

property="conponent: nane/ connect or EndRol es” >

</scm :for>
or
<scnml :for var="var”

property="c: nane/ connect or EndRol es” >

</scm :for>

These subgtitutions produce a collection of roles. Insde the <f or > tag, the current
role can be accessed through thevar attribute.

Operation Role Collections

A component role is composed of any number of parameter roles. This collection is
available through the following SCML substitution:

<scnml :for var="var”

property="operation:this/paraneterRol es”>

</scm :for>

60

SCML EXTENSIONS FOR PATTERNS

or

<scnml :for var="var”

property="o0:thi s/ paranet er Rol es” >

</scm :for>

This substitution produces a collection of parameter roles. Inside the <f or > tag, the
current role can be accessed through the var attribute. This collection only returns
the parameter rolesfor the current operation role.

Operation Role Bodies and SCML

Any operation role body may be a mixture of source code and SCML tags. When
performing substitutions, the syntax defined above in the Role References section
must be observed. This syntax replaces that which is defined for the <s> tag and
itsvariantsin the SCML specification.

All other SCML tags may aso be used, and their use is governed by the SCML
specification. This means that you may insert SCML macros (<i ncl ude> tag),
use conditional logic (<i f - equal > tag), perform looping (<f or > tag), etc. The
only difference for usng them with patterns is that al property references must
adhere to the syntax defined in the Role References and Collections of Roles
sections.

Example

Let's say that we wish to loop through all of a component role’s (named ConpA)
operation roles and perform some steps based on conditional logic. The SCML
might look likethis:

<scm :for var="role” property="c: ConpA/ operationRol es” >
<scm :if-equal >
<scm : val ue><scml : s>rol e/ st ereotype</scnl : s></scnl : val ue>

<scm : val ue>EJBCr eat e</ scnl : val ue>

61

SCML EXTENSIONS FOR PATTERNS

<scm : t hen>
Systemout. println(“<scnl:s>rol e/name</scm:s>is a

create nmethod!”);

</scnm :t hen>
<scml : el se>
Systemout. println(“<scm :s>rol e/ name</scnl:s>is not a

create nethod!”);

</scnl : el se>

</scm :if-equal >

62

COMPONENT ELEMENTS

Component Elements

Provides a detail ed specification of components

Contents
Component 64
Mapping Roles to Components 65

XML Bindings 66

63

COMPONENT ELEMENTS

Component

A component represents an actual component. We do not describe a component’s
interface or internas here, because that is already done well through the particular
component standard in use as well as UML itsdlf. Instead, we describe authorship,
versoning, external artifacts, etc. We also describe how a component and its

elementsfill strategy roles.

A component is defined by the attributes and associations enumerated in Table 46

and Table 47 respectively.

Table 46: Component Attributes

Value Type Required
namespace String Yes

name String Yes
description String No

type String No

Table 47: Component Associations

Element Cardinality
Artifact 0.*
Author 0.*
Component Role 0.*
Keyword 0.*
Palette 0.*
Strategy 0.*

Default

Description

A space within which the component
name must be unique

Name of the component
A description of the component
Component type. Thiswill be based

on component stereotypes that are
provided in UML Profiles

Required Description

No

No

No

No

No

No

An external resource that further
describe the component

An author of the component

Component rolefilled by the
component in a strategy

Classifies the component

Organizes the component with other
components

A strategy the component role
participatesin

64

COMPONENT ELEMENTS

Element Cardinality Required Description

URL 1.* Yes URL to afile, JAR or ZIP that defines
part of or the entire component
implementation

Version 1 Yes Version information for the component

A graphic representation of acomponent’ s association to other elementsis provided
inFigure 17.

Palette

organizes created by

references
Artifact Ot Component
0.* 1 y . Role

classified by implemented with

" 1 1.
4Key—w-6fd7

Figure 17: Component Associations

Mapping Roles to Components

When a dtrategy is instantiated, all required roles are mapped to one or more
components or component el ements (depending on the multiplicity). Roles that are
not marked as required may or may not be mapped.

Each role serves to redtrict which components may participate in a strategy. The
more component and connector roles a strategy specifies, the more redtrictive it is
about which collaboration of components may represent it. Likewise, the more

65

COMPONENT ELEMENTS

attribute, operation and tag roles a component role specifies, the more restrictive it
is about what component may fill it. Roles only serve to describe the required parts
of a component that are necessary for its participation in the strategy, and they are
not intended to describe an entire component. So a component that participates in
an ingtantiated strategy will likely have some elements (attributes, operations, etc.)
also participating as necessary to fill the associated component role and others that
do not.

A pattern-driven development tool would restrict what components, methods, tags,
atributes, etc. (as gppropriate) are available for any given role in a strategy. If a
component qualifies for filling acomponent role but does not have, say, an attribute
that qualifies for filling a required attribute role, the tool could offer to generate the
attribute on the component. In this way, strategies may be mapped onto existing
components, used as templates to create a collaboration of components or a mixture
of both.

XML Bindings

Each component is represented with an XML descriptor that has the *.component”
file extenson. The DTD for this descriptor is provided in Pattern and Component
Descriptors. Files based on this DTD will typicdly be placed dongside a
components implementation classes.

Each ingtantiated strategy is represented with an XML descriptor that has the
“.igtrategy” file extensgon. The DTD for this descriptor is provided in Pattern and
Component Descriptors. Files based on thisDTD will typically be packaged as part
of a component paette; however, they may aso be packaged with individua or a
subset of components (e.g. anh EJB JAR).

Packaging requirements for both of these descriptors are discussed in more detail in
Packaging Requirements.

66

PALETTE ELEMENTS

Palette Elements

Provides a detailed specification of component
palettes

Contents
Palette 68

XML Bindings 69

67

PALETTE ELEMENTS

Palette

A palette groups a number of related components according to some criteria. There
is no restriction on how they are grouped, so it could be by domain, company, type,
function, etc. A paette serves asthe basis for packaging and exchanging a group of
reusable components and frameworks. If instantiated strategies were included with
the components or framework, then including catalogs containing the referenced
patterns and strategies would not be uncommon. The physical structure of a palette
is provided in Packaging Requirements.

A paette is defined by the attributes and associations enumerated in Table 48 and
Table 49 respectively.

Table 48: Palette Associations

Value Type Required Default Description

namespace String Yes -- A space within which the palette
name must be unique

name String Yes - Name of the palette

description String No -- A description of the palette

Table 49: Palette Associations

Element Cardinality Required Description

Artifact 0.* No An external resource that further
describes the palette

Author 0.* No An author of the palette
Catalog 0.* No A catalog that contains patterns and

strategies pertinent to the component or
framework design

Component 0.* No A component that is provided on the
palette

Palette 0.* No A palette may be composed of other
palettes

Version 1 Yes Version information for the palette

68

PALETTE ELEMENTS

A graphic representation of a palette’ s association with other elements is provided
in Figure 18.

Component >
organizes
.........
. 1 references

0“*
Catalog

Version

Figure 18: Palette Associations

XML Bindings

Each paette is represented with an XML descriptor that has the “.pdette’ file
extenson. The DTD for this descriptor is provided in Pattern and Component
Descriptors. Files based on this DTD will typically be placed in a paette JAR.
Packaging requirements for this descriptor are discussed in more detal in
Packaging Requirements.

69

UML PROFILES

UML Profiles

Provides a UML profile for patterns and defines
which other profiles may be used for stereotypes

Contents

70

UML PROFILES

TODO

71

PACKAGING REQUIREMENTS

Packaging Requirements

Provides requirements for packaging patterns and
components

Contents

72

PACKAGING REQUIREMENTS

TODO

73

EXAMPLES

Examples

Provides non-trivial examples of PCML in action

Contents

74

PACKAGING REQUIREMENTS

TODO

75

PATTERN/COMPONENT DESCRIPTORS

Pattern and Component
Descriptors

Provides XML DTDs for elements defined in this

specification

Contents

Common Elements DTD
Pettern DTD

Strategy DTD

Catalog DTD
Component DTD
Strategy Instance DTD

Palette DTD

7

89
102
106
108
116

Chapter

76

PATTERN/COMPONENT DESCRIPTORS

Common Elements DTD

<?xm version="1.0" encodi ng="1S0O 8859-1"7?>

<l-- Copyright (c) 2001-2002 (bjectVenture Inc. Al rights
reserved. This product or docurment is protected by
copyri ght and distributed under licenses restricting its
use, copying, and distribution. No part of this product
or docunentati on may be reproduced in any form by any
means w thout prior witten authorization of ObjectVenture
and its licensors, if any.

TH' S SOFTWARE IS PROVIDED "AS |1 S* AND ANY EXPRESSED OR

| MPLI ED WARRANTI ES, | NCLUDI NG, BUT NOT LIMTED TO THE

| MPLI ED WARRANTI ES OF MERCHANTABI LI TY AND FI TNESS FOR A
PARTI CULAR PURPOSE ARE DI SCLAI MED. | N NO EVENT SHALL
OBJECTVENTURE I NC. BE LI ABLE FOR ANY DI RECT, | NDI RECT,

I NCI DENTAL, SPECI AL, EXEMPLARY, OR CONSEQUENTI AL DAMAGES
(I NCLUDI NG, BUT NOT LIMTED TO PROCUREMENT OF SUBSTI TUTE
G0ODS OR SERVI CES; LOSS OF USE, DATA, OR PROFITS; OR

BUSI NESS | NTERRUPTI ON) HOWAEVER CAUSED AND ON ANY THEORY OF
LI ABI LI TY, WHETHER I N CONTRACT, STRICT LIABILITY, OR TORT
(1 NCLUDI NG NEGLI GENCE OR OTHERW SE) ARI SING | N ANY WAY OUT
OF THE USE OF TH S SOFTWARE, EVEN | F ADVI SED OF THE
PCSSI Bl LI TY OF SUCH DAMAGE

<l-- This is the DID defining combn constructs used in the
description of patterns and conponents. Standal one XM
files derived fromthis DID are not reconmended. The
parent DID of any el ement that wi shes to include any of
t hese constructs should reference this DID as an externa
entity.

Version: 1.0

<l-- The Boolean entity is the string representation of a
bool ean (true or false) variable.

-->

<IENTITY % Bool ean "(true | false | yes | no)">

<l-- Alocation entity is optionally one of the foll ow ng:

77

PATTERN/COMPONENT DESCRIPTORS

1) arelative path, delimted by "/" characters, that
defines the location of a resource relative to the
|l ocation of the XML file it is referenced within

2) or a URI path to an external resource.

S
<IENTITY % Locati on " CDATA">

<l-- The Access entity is the string representation of an
element's visibility to others.

-->

<IENTITY % Access "(public | private | protected)">

<l-- The Aggregation entity is the string representation of an
el ement's | evel of aggregation over another in a
rel ati onshi p.

-->

<IENTITY % Aggregation "(conposition | aggregation | none)">

<l-- The Miutability entity is the string representati on of an
el ement' s changeability.

-->

<IENTITY % Mutability "(read | read-wite)">

<l-- A description elenent is an explanation of another
el ement .

-->

<! ELEMENT descri pti on (#PCDATA) >

<l-- A summary element is a quick summary of another el enent.
-->

<! ELEMENT sunmary (#PCDATA) >

<l-- An urls elenent is a section that contains one or nore
url el enents.

ur | A URL

-->
<IELEMENT wurls (url+)>

<l-- An url elenent is an URL link with a friendly display

78

PATTERN/COMPONENT DESCRIPTORS

name.
di spl ay- nane Di spl ay nane of the URL
addr ess Actual URL

An exanpl e woul d be a display-name of "My Hone Page" with
an address of "www. johndoe.com ™

-->
<! ELEMENT url EMPTY>
<I ATTLI ST url di spl ay- nane CDATA #| MPLI ED>
< ATTLI ST url addr ess CDATA #REQUI RED>
<l-- =Z========= AKA El enent =============—===—=—==—=—==—=—===—===== -->
<l-- An akas elenent is a section that contains one or nore

aka el enents.

aka An aka

-->

<l ELEMENT akas (aka+)>

<l-- An aka el enent is an another nane that the parent el enment
may be known by.

-->

<! ELEMENT aka (#PCDATA) >

<l-- =Z========= Keymord El ement =========================== .- >
<I-- A keywords elenent is a section that contains one or nore
keywor ds.
keywor d A keyword
-->

<! ELEMENT keywords (keyword+) >

<I-- A keyword element is word or phrase that is useful in
categorizing the parent elenment and its characteristics.

-->

<! ELEMENT keyword (#PCDATA) >

<l-- =Z========= Aut hor El enent =============—===—=—=========== -->

<l-- An authors elenent is a section that contains one or nore
aut hor s.

79

PATTERN/COMPONENT DESCRIPTORS

aut hor An aut hor
-->

<l ELEMENT aut hors (aut hor+) >
<l-- An author element contains information identifying the
creator of a resource.
nane Nane of the author
or gani zati on Organi zation the author represents. If the
nane is an actual organization, then this
attribute may be omtted.
description Description of the author
url A URL where infornmation pertaining to the

aut hor, his organization, or his works may
be obtai ned. This includes e-mai

addr esses.
>
<! ELEMENT aut hor (description, url*)>
<! ATTLI ST aut hor name CDATA #REQUI RED>
<I ATTLI ST aut hor or gani zati on CDATA #| MPLI ED>
<l-- ========== \lersion El ement =========================== .- >
<!-- A version elenent represents versioning infornmation of a
resource. It's prinmary purpose is to distinguish nultiple
revi sions of the sanme resource.
revision Ver si on nunber
dat e Date/tine of the revision
description Description of the revision
copyri ght Copyright notice for this revision of the
resource
rel ease-notes Notes that describe inportant aspects of
this revision
license Li censing information for this revision of
the resource
-->

<! ELEMENT version (description, copyright?, release-notes?,
license?, artifacts?)>

<I ATTLI ST version revision CDATA #REQUI RED>

<! ATTLI ST version date CDATA #| MPLI ED>

80

PATTERN/COMPONENT DESCRIPTORS

<l-- The copyright elenent provides a copyright notice.
-->

<! ELEMENT copyri ght (#PCDATA) >

<l-- The rel ease-notes el enent provides a description of a
resource revision.

-->

<! ELEMENT rel ease- not es (#PCDATA) >

<l-- The license el enent provides licensing information for a
resource that, among ot her things, defines usage
restrictions.

-->

<! ELEMENT | icense (#PCDATA) >

<l -- =Z========== Artifact El ement ========================== _..>

<l-- An artifacts element is a section that contains one or
nore artifacts.

artifact An artifact
>

<IELEMENT artifacts (artifact+)>

<l-- An artifact elenent is an external file that may not be
appropriately supplied in XML form Wen related to
patterns, it helps to further describe a pattern or
instruct in its use. Exanples of an artifact include: UML
di agram graphi cal inage, binary docunentation, etc.

name Narme of the artifact
type File type of the artifact, which should be

represented by a common file extension
(i.e. htm, doc, mdl)

url Location of the artifact in the formof a
URL, which may be either relative or
absol ute
description Description of the artifact
aut hor An aut hor of the artifact
version Version information for the artifact
-->
<l ELEMENT artifact (description?, authors?, version, urls?)>
<! ATTLI ST artifact name CDATA #REQUI RED>
<I ATTLI ST arti fact type CDATA #REQUI RED>

81

PATTERN/COMPONENT DESCRIPTORS

<I ATTLI ST artifact url %.ocati on; #REQUI RED>

82

PATTERN/COMPONENT DESCRIPTORS

Pattern DTD

<?xm version="1.0" encodi ng="1S0O 8859-1"7?>

<l-- Copyright (c) 2001-2002 (bjectVenture Inc. Al rights
reserved.

Thi s product or docunent is protected by copyright and

di stributed under licenses restricting its use, copying,
and distribution. No part of this product or docunentation
may be reproduced in any form by any nmeans without prior
witten authorization of CbjectVenture and its |icensors,

i f any.

TH'S SOFTWARE IS PROVIDED "AS |1 S* AND ANY EXPRESSED OR

| MPLI ED WARRANTI ES, | NCLUDI NG, BUT NOT LIM TED TO, THE

| MPLI ED WARRANTI ES OF MERCHANTABI LI TY AND FI TNESS FOR A
PARTI CULAR PURPCSE ARE DI SCLAI MED. | N NO EVENT SHALL
OBJECTVENTURE I NC. BE LI ABLE FOR ANY DI RECT, | NDI RECT,

I NCI DENTAL, SPECI AL, EXEMPLARY, OR CONSEQUENTI AL DAMAGES
(I NCLUDI NG, BUT NOT LIMTED TO PROCUREMENT OF SUBSTI TUTE
@BOODS OR SERVI CES; LOSS OF USE, DATA, OR PROFITS, OR

BUSI NESS | NTERRUPTI ON) HOWEVER CAUSED AND ON ANY THEORY OF
LI ABI LI TY, WHETHER | N CONTRACT, STRICT LIABILITY, OR TORT
(1 NCLUDI NG NEGLI GENCE OR OTHERW SE) ARI SI NG I N ANY WAY OUT
OF THE USE OF TH'S SOFTWARE, EVEN | F ADVI SED OF THE
PGOSSI BI LI TY OF SUCH DAMAGE

<l-- This is the DID defining a pattern. To support validation
of your pattern file, include the follow ng DOCTYPE
el ement at the beginning (after the "xml" declaration):

<! DCCTYPE pattern PUBLIC
"-//QbjectVenture//DID Pattern 1.0//EN'
"http://ww. obj ectventure.conidtds/pattern-1_0.dtd">

Version: 1.0

<! - - === Q)rrrmn Types s ———————— R

<!-- This entity is a reference to an external DITD. It defines
a nunber of common entity and el enent definitions that are
used here and in the other pattern DIDs.

-->

<IENTITY % comon SYSTEM "conmon. dt d" >

%€ ommon,;

83

PATTERN/COMPONENT DESCRIPTORS

<I-- The Rel Type entity represents a type of relationship
bet ween two patterns.

-->

<IENTITY % Rel Type "(like | nested | reference)">

<l-- A pattern is a sonewhat generic description of a solution
provided to address one or a conmon set of problens in a
certain context. Although a pattern describes a solution
it does not put any constraints on how that solution may
be realized. A pattern nay; however, describe how it
relates to other patterns and even how it nay be conposed
of other patterns. In this way, the abstract nature of
patterns is preserved while the realization of solutions
and idionms is reserved for strategies.

nanespace A space within which the pattern nane
must be uni que

nane Nane of the pattern

abstraction Abstraction level of the pattern, which
may i nclude such descriptions as
“Architectural”™ or "Design”

donai n Domain the pattern is particularly well
suited for or intended for, which may
i ncl ude such descriptions as “Financial,”

“Tel ecomuni cation,” “Medical,” etc.

aut hors Aut hors of the pattern

version Version information for the pattern

akas O her names for the pattern

keywor ds Cat egori zations or classifications of the
pattern

cont ext Envi ronment of the pattern

forces Motivation of the pattern

probl em The problem sol ved by the pattern

sol ution The solution to the probl em provi ded by

the pattern

consequences Consequence of the pattern's use

84

PATTERN/COMPONENT DESCRIPTORS

rel ati onshi ps O her related patterns

artifacts External resources that further describes
the pattern
-->
<! ELEMENT pattern (authors?, version, akas?, keywords?,
context, forces, problem solution
consequences, relationships?, artifacts?)>

<I ATTLI ST pattern namespace CDATA #REQUI RED>
<I ATTLI ST pattern name CDATA #REQUI RED>
<I ATTLI ST pattern abstraction CDATA #| MPLI ED>
<I ATTLI ST pattern domai n CDATA #| MPLI ED>
<l -- =Z========= Context El enent =========================== -->
<I-- A context represents the environment wthin which a

pattern describes itself and is a general notivation for
its existence.

sumary Atitle or sunmary of the description
description A description of the context

-->
<! ELEMENT context (summary?, description)>

<l -- ========== Force E|enent et
<l-- Aforces element is a section that contains one or nore
f orces.
force A force
-->

<I ELEMENT forces (force+)>

<I-- Aforce represents a notivation of a pattern. It
essentially anplifies the problema pattern is trying to
address and then serves as a constraint on the solution

sunmary Atitle of the force or a sunmary of the
description

description A description of the force
-->

<! ELEMENT force (sunmary?, description)>

85

PATTERN/COMPONENT DESCRIPTORS

<l-- A problemrepresents a design need that is to be addressed
by a pattern. It essentially distinguishes the use of one
pattern over another.

sunmmary Qui ck overview of the probl em

description More detail ed expl anation of the probl em
-->

<! ELEMENT probl em (sumary?, description)>

<l-- A solution solves the probl emdescribed in a pattern. It
is conposed of a nunber of participants and defines the
static structure and dynam c interactions of them

sunmary Qui ck overview of the solution
description More detail ed explanation of the

sol ution
participants Participants or roles in the solution
structure Static structure of the solution
col | aborati on Dynam c interactions found in the

sol ution

-->
<! ELEMENT sol ution (summary?, description, participants,
structure, collaboration)>

<l-- A structure represents the static interaction of
participants (as in a UML class diagram) in a solution

description Description of the collaboration
i ncl udi ng how the participants interact

artifacts External resources that further describe
the col |l aboration. This could be a UML
cl ass di agram
-->
<!l ELEMENT structure (description, artifacts?)>

<l-- A collaboration represents the dynanic interaction of
participants (as in a UML sequence or coll aboration
diagram) in a solution

description Description of the collaboration
i ncl udi ng how the participants interact

86

PATTERN/COMPONENT DESCRIPTORS

artifacts External resources that further describe
the coll aboration. This could be a UML
sequence di agram
-->
<! ELEMENT col | aboration (description, artifacts?)>

<l-- A participant represents a distinct role played by a
conponent in the pattern solution. Each partici pant
describes its general characteristics but does not place
any constraints on howit nmay be realized.

nane Nane of the participant, which nust be
uni que anong the others.

required Det er mi nes whether or not this
participant is required to conplete the
sol ution.
description Description of the participant and its
role in the solution
-->
<l ELEMENT partici pant (description)>
<! ATTLI ST parti ci pant name CDATA #REQUI RED>
<I ATTLI ST partici pant required %Bool ean; "true">
<l-- =Z========= Consequence El enent ======================= - . >
<I-- A consequences elenent is a section that contains one or
nore consequences.
consequence A consequence
>

<! ELEMENT consequences (consequence+) >

<l-- A consequence represents a pro or con of pattern usage. It
descri bes how a pattern supports its objectives and the
trade-offs in doing so.

summary Atitle of the consequence or a sunmary
of the description

description A description of the consequence
-->

<! ELEMENT consequence (sunmary?, description)>

87

PATTERN/COMPONENT DESCRIPTORS

<l-- Arelationships element is a section that contains
references to one or nore patterns that are related to
this one.
relationship A pattern related in sonme way to this
one
-->

<l ELEMENT rel ati onshi ps (rel ati onshi p+)>

<l-- Arelationship represents a relationship between two
patterns. A pattern relationship is purely descriptive,
but it does have an attribute that specifies what type of
relationship it is. This elenent would be used to refer to
a like pattern or to describe a pattern nesting.

nanespace Nanespace of the related pattern
nane Nane of the related pattern
type Defines the type of relationship
summary A short phrase that describes the rel ated
pattern
description Description of how the two patterns are
rel at ed
-->
<l ELEMENT rel ati onship (sumrary?, description)>
<! ATTLI ST rel ationship namespace CDATA #REQUI RED>
<I ATTLI ST rel ati onship nane CDATA #REQUI RED>
<I ATTLI ST rel ati onship type %Rel Type “reference”>

88

PATTERN/COMPONENT DESCRIPTORS

Strategy DTD

<?xm version="1.0" encodi ng="1S0O 8859-1"7?>

<I--

<I--

<I--

<l--

Copyright (c) 2001-2002 (bjectVenture Inc. Al rights
reserved.

Thi s product or docunent is protected by copyright and

di stributed under licenses restricting its use, copying,
and distribution. No part of this product or docunentation
may be reproduced in any form by any nmeans without prior
witten authorization of CbjectVenture and its |icensors,

i f any.

TH'S SOFTWARE IS PROVIDED "AS |1 S* AND ANY EXPRESSED OR

| MPLI ED WARRANTI ES, | NCLUDI NG, BUT NOT LIM TED TO, THE

| MPLI ED WARRANTI ES OF MERCHANTABI LI TY AND FI TNESS FOR A
PARTI CULAR PURPCSE ARE DI SCLAI MED. | N NO EVENT SHALL
OBJECTVENTURE I NC. BE LI ABLE FOR ANY DI RECT, | NDI RECT,

I NCI DENTAL, SPECI AL, EXEMPLARY, OR CONSEQUENTI AL DAMAGES
(I NCLUDI NG, BUT NOT LIMTED TO PROCUREMENT OF SUBSTI TUTE
@BOODS OR SERVI CES; LOSS OF USE, DATA, OR PROFITS, OR

BUSI NESS | NTERRUPTI ON) HOWEVER CAUSED AND ON ANY THEORY OF
LI ABI LI TY, WHETHER | N CONTRACT, STRICT LIABILITY, OR TORT
(1 NCLUDI NG NEGLI GENCE OR OTHERW SE) ARI SI NG I N ANY WAY OUT
OF THE USE OF TH'S SOFTWARE, EVEN | F ADVI SED OF THE
PGOSSI BI LI TY OF SUCH DAMAGE

This is the DID defining a pattern strategy, which is one
of several possible realizations or inplenentations of a
pattern.

To support validation of your pattern strategy file,
i nclude the foll owi ng DOCTYPE el ement at the begi nning
(after the "xm " declaration):

<! DOCTYPE strategy PUBLIC
"-// QObjectVenture//DID Strategy 1.0//EN'
"http://ww. obj ectventure.conidtds/strategy-1 0.dtd">

Version: 1.0

This entity is a reference to an external DID. It defines
a nunber of common entity and el enent definitions that are

89

PATTERN/COMPONENT DESCRIPTORS

used here and in the other pattern DIDs.

-->
<IENTITY % common SYSTEM "conmon. dt d" >

%€ onmmon,;

<l-- =Z========== Strat egy El ement ========================== -->
<l-- A strategy represents one of many possible inplenmentations

-->

of a pattern solution, a building block for other
strategies or an idiom It serves as a bridge fromthe

nor e abstract
of components.

notion of a pattern to the nore rigid world
A strategy can describe the design of a

si ngl e conponent or a large framework of conponents. A
strategy is role based, and each role defines restrictions

on any conponent or

element that may fill it. It is this

rol e-based mechani smthat gives strategies their greatest
val ue; reuse of a design (which the strategy codifies) is
gai ned by plugging in different conmponents and el enents in

each role.

nanespace A space within which the strategy nane
nmust be uni que

nane Nane of the strategy

description

Description of the strategy

aut hors Aut hors of the strategy

version Version information for the strategy

akas O her nanes for the pattern

keywor ds Cat egori zations or classifications of
t he strategy

rol es Rol es that define the strategy

pattern-ref

strategies

artifacts

The pattern that this strategy provides
an inplenentation for

O her strategies that this one is
conposed of

External resources that further
describe the strategy (i.e. UM
di agranms, graphics, etc.)

<! ELEMENT strategy (description?, authors?, version, akas?,

keywords?, roles, pattern-ref?,

strategi es?, artifacts?)>
nanmespace CDATA

<I ATTLI ST strategy #REQUI RED>

20

PATTERN/COMPONENT DESCRIPTORS

<I ATTLI ST strategy name CDATA #REQUI RED>
<l-- =Z========= Rol es El enment ==============—===-==—=-=-=—=—=-===== .. >
<l-- Aroles elenent is a section that contains one or nore

conponent and connector roles that describe the
col | aborati on of components within a strategy.

conponent-roles Conponent roles that the strategy is
conposed of

connector-roles Connector roles that strategy is conposed
of
-->
<! ELEMENT rol es (conmponent-roles, connector-roles?)>

<I-- A strategies element is a section that contains one or
nore strategy references.

strategy-ref A strategy reference
-->

<l ELEMENT strategies (strategy-ref+)>

<l-- A strategy-ref represents a reference to a pattern

strat egy.

nanespace Nanespace of the strategy

nane Nane of the strategy
-->
<l ELEMENT strategy-ref EMPTY>
<I ATTLI ST strategy-ref namespace CDATA #REQUI RED>
<! ATTLI ST strategy-ref nanme CDATA #REQUI RED>
<l -- ========== Parent Pattern El enent ==================== -.>
<l-- A pattern-ref represents the pattern for which this

strategy provides a solution inplenmentation. A strategy
may realize only one pattern

nanespace Nanespace of the pattern
nane Nane of the pattern

-->
<!l ELEMENT pattern-ref (role-nmap*)>

91

PATTERN/COMPONENT DESCRIPTORS

<I ATTLI ST pattern-ref nanmespace CDATA #REQUI RED>
<I ATTLI ST pattern-ref name CDATA #REQUI RED>
<l-- Arole-ref represents the mapping of this conmponent role

to a pattern participant. This el ement nmust not be used
unl ess the strategy has a parent pattern

rol e- nane Nane of the conponent role
partici pant Nane of the participant or pattern role
that this conponent role fills
-->
<l ELEMENT rol e-ref EMPTY>
<I ATTLI ST rol e-ref rol e-nane CDATA #REQUI RED>
<I ATTLI ST rol e-ref participant CDATA #REQUI RED>
<l-- =Z========= Con"ponent Rol e El ement ==================== - _.>
<l-- A conponent role represents a plug-in point in a strategy
for a component. The role specifies an interface, so to
speak, that a conponent nust satisfy to fill the role. Any

nunber of conponents may be swapped in and out of each
conponent role, as long as they adhere to the specified

interface.
nane Nane of the conponent role
st ereot ype Defines the type of conmponent the
conponent role nmay be mapped to
is-interface Restricts the mapping of this conmponent
role to conponent interfaces only
multiplicity Allows the role to be filled by nore than
one conmponent. This is useful in patterns
i ke Abstract Factory, where the concrete
factory role will be napped to nultiple
conponent s.
The foll owi ng val ues are avail abl e:
1 - One
- Any whol e nunber > 1
* - Many or nore than one
required Det er mi nes whether or not this conponent
role is required to be filled when a
strategy is mapped
description Description of the conponent role
ext ends I nheritance rel ationships with other

92

PATTERN/COMPONENT DESCRIPTORS

conponent roles. Al related rol es nust
have the sane value for is-interface

If the component that fills a conponent
role is conposed of a single class, then
it is required to subclass the conponent
that fills the parent conponent role.

i mpl enent s Interfaces that this component role
i mpl ements. The associ ated conponent
roles nmust have is-interface set to true.

attribute-roles Child attribute roles
operation-roles Child operation roles

tag-roles Child tag roles
-->
<l ELEMENT conponent-rol e (description?, extends?, inplenments?,
attribute-roles?, operation-role?
tag-rol es?, participant-ref?)>

<! ATTLI ST conponent-role nane CDATA #REQUI RED>
<I ATTLI ST conponent-rol e stereotype CDATA #| MPLI ED>
<I ATTLI ST conponent-role is-interface %Bool ean; "fal se">
<! ATTLI ST component-role nultiplicity CDATA #REQUI RED>
<I ATTLI ST conponent-role required %Bool ean; "true">
<l-- An extends elenment is a section that contains one or

nore conponents that a conmponent must descend from
to satisfy the conponent role. The associ ated conponent
role must have is-interface set to false

conponent-rol e-ref A parent component
-->

<! ELEMENT extends (conponent-role-ref +)>

<l-- An inplements elenent is a section that contains one or
nore conponent interfaces that a component must inplenment
to satisfy the conponent role. The associ ated conponent
role must have is-interface set to true.

conponent-rol e-ref A conmponent interface
-->

<! ELEMENT i npl enents (conmponent-rol e-ref +)>

<!-- An conponent-role-ref elenent represents a reference to a
conponent role.

nanespace Nanespace of the conponent role, which is
not required if the conmponent interface
is owned by the sane strategy

93

PATTERN/COMPONENT DESCRIPTORS

nane Nanme of the component role
-->
<! ELEMENT conponent -rol e-ref EMPTY>
<! ATTLI ST conponent-rol e-ref namespace CDATA #1 MPLI ED>
<I ATTLI ST conponent-rol e-ref nane CDATA #REQUI RED>
<l -- =Z========== Attribute Role El enent ==================== -..>
<l-- An attribute-roles elenent is a section that contains one
or nore attribute roles.
attribute-role An attribute role
-->

<l ELEMENT attribute-roles (attribute-role+)>

<l-- An attribute role represents an attribute of a conponent.
Each attribute role that is defined further restricts the
conponents that a conponent role nay be mapped to. Each
required attribute role nmust be mapped to a valid
attribute before the strategy is properly inplenented.

name Narme of the attribute role

type Type that an attribute nmust be to satisfy
the attribute role. Exanples of Java
types include "java.lang. String" and
"bool ean."” The type nay be represented
usi ng an SCML substitution.

st ereot ype Defines the type of attribute the
attribute role nmay be mapped to

visibility Visibility that an attribute nust have to
satisfy the attribute role. For exanple,
if the attribute role specifies a
visibility of "public", then it may only
be mapped to a public attribute.

static Det er mi nes whether or not the attribute
that the attribute role is napped to nust
bel ong to a conmponent or an instance. For
exanple, an attribute role with static
set to "true" nay not be mapped to an
attribute that is owned by an instance.

const ant Det ermi nes whether or not the attribute
that the attribute role is napped to nust
be constant. For exanple, an attribute
role with constant set to "true" may not
be mapped to a nutable attribute.

94

PATTERN/COMPONENT DESCRIPTORS

multiplicity Allows the role to be filled by nore than
one attribute. This is useful in patterns
i ke Value nject, where the role
representing data will be mapped to
nmultiple attributes.

The foll owi ng val ues are avail abl e:

1 - One
- Any whol e nunber > 1
* - Many or nore than one
required Det ermi nes whether or not this attribute

role is required to be napped when its
parent conponent role is mapped to a

conponent

description Description of the attribute role
-->
< ELEMENT attribute-role (description?)>
<I ATTLI ST attribute-role nane CDATA #REQUI RED>
<I ATTLI ST attri bute-role type CDATA #1 MPLI ED>
<I ATTLI ST attribute-role stereotype CDATA #| MPLI ED>
<I ATTLI ST attribute-role visibility %Access; "public">
<I ATTLI ST attribute-role static %Bool ean; "fal se">
<! ATTLI ST attribute-role constant %Bool ean; "fal se">
<IATTLI ST attribute-role multiplicity CDATA #REQUI RED>
<I ATTLI ST attribute-role required %Bool ean; "true">
<l-- ========== (peration Role Elenment ==================== -->
<l-- An operation-roles elenent is a section that contains one

or nore operation roles.

operation-role An operation role
-->

<I ELEMENT operation-rol es (operation-role+)>

<l-- An operation role represents a nethod of a component. Each
operation role that is defined further restricts the
conponents that a conponent role may be mapped to. Each
requi red operation role nust be nmapped to a valid method
before the strategy is properly inplenented.

nane Nane of the operation role

st ereot ype Defines the type of nethod the operation
role nay be mapped to

visibility Visibility that a nethod nmust have to
satisfy the operation role. For exanple,

95

PATTERN/COMPONENT DESCRIPTORS

if the operation role specifies a

visibility of

be mapped to a public

static

exanpl e,
set to "true"
net hod t hat

return-type

"public",

Det er mi nes whet her
the operation role is
bel ong to a conponent or
an operation
may not

then it
met hod.

may only

or not the nethod that

Return type of that a method nust

satisfy the operation role.
an operation role with a return type set

to "bool ean"

t hat

may not

"int" or
The return-type

mapped to nust

an instance. For
role with static
be mapped to a

is owned by an instance.

have to

For exanpl e,

be mapped to a
nmethod with a return type of
has no return type.

one

may be represented using an SCM.

substi tution.

multiplicity
one attribute

i ke Val ue bject,
representing data will

Allows the role to be filled by nore than

This is useful in patterns

where the role

mul tiple attributes.

be mapped to

The foll owi ng val ues are avail abl e:

1 - One
- Any whol e nunber > 1
* - Many or nore than one

required

parent conponent
conponent

description

par anmet er-rol es

Det er m nes whet her

or not this operation
role is required to be nmapped when its

operation role’'s signature

role is mapped to a

Description of the operation role

Arguments that define part of the

par anmet er -r ol es?

CDATA
CDATA
%Access;

body Body of the operation role
-->
<l ELEMENT operation-rol e (description?,

body?) >

<I ATTLI ST operation-role nane
<I ATTLI ST operation-role stereotype
<I ATTLI ST operation-role visibility
<! ATTLI ST operation-role static

<! ATTLI ST operation-role
<! ATTLI ST attribute-role
<I ATTLI ST operation-role

return-type
multiplicity
required

%Bool ean
CDATA
CDATA
%Bool ean

#REQUI RED>
#| MPLI ED>
"public">
"fal se">

#| MPLI ED>
#REQUI RED>
"true">

96

PATTERN/COMPONENT DESCRIPTORS

<l-- A body is the content of an operation role's body. It nay
contai n source code, Source Code Macro Language (SCM.) or
a conbi nati on of both. Refer to the SCM. specification for
details on its use.

-->

<! ELEMENT body (#PCDATA) >

<l -- ========== Paraneter Role El enent ==================== -.>

<l-- An paraneter-roles elenent is a section that contains one
or nore paraneter roles. The list of paraneter roles may
be ordered or unordered.

paraneter-rol e A paraneter-role
ordered Det erm nes whether or not the |ist of

par ameter roles nmust be mapped in order
to a nethod s argunents

-->
<! ELEMENT paraneter-rol es (paraneter-role+)>
<I ATTLI ST paraneter-role ordered %Bool ean; "true">
<l-- A paraneter role represents a paraneter of a method. Each
paraneter role that is defined further restricts the
nmet hods that the operation role may be mapped to. Each
parameter role nust be nmapped to a valid parameter before
the strategy is properly inplenented.
nane Nane of the paraneter role
type Type of the paraneter role. Exanples of
Java types include "java.lang. String" and
"bool ean."” The type nay be represented
usi ng an SCML substitution.
const ant Det er mi nes whether or not the paranter
that the paramer role is mapped to nust
be constant. For exanple, a paranter
role with constant set to "true" may not be
mapped to a mutable paranter.
description Description of the paraneter role
-->
<! ELEMENT paraneter-role (description?)>
<I ATTLI ST paraneter-rol e name CDATA #REQUI RED>
<! ATTLI ST paraneter-role type CDATA #REQUI RED>
<! ATTLI ST paraneter-role const ant %Bool ean; "fal se">
<l -- ========== Tag Rol e El enent ========================== - . >

97

PATTERN/COMPONENT DESCRIPTORS

<l-- Atag-roles elenent is a section that contains one or nore
tag roles.

tag-role A tag role
-->

<!l ELEMENT tag-roles (tag-rol e+)>

<l-- Atag role represents a tag in a narkup conponent (e.g.
HTM., JSP). Each tag role that is defined further
restricts the conponents that the conponent role nmay be
mapped to. Each tag role nust be mapped to a valid tag
before the strategy is properly inplenented.

nane Nane of the tag role

st ereot ype Defines the type of tag the tag role may
be mapped to

prefix Default tag library prefix (for JSPs) or
a hanmespace

t ag- nane Literal nane of the tag

multiplicity Allows the role to be filled by nore than
one tag.

The foll owi ng val ues are avail abl e:

1 - One

- Any whol e nunber > 1

* - Many or nore than one
required Det er mi nes whether or not this tag role

is required to be napped when its parent
conponent role is mapped to a conponent

description Description of the tag role

tag-attribute-role An attribute of the tag role

tag-role A nested tag role

-->

<IELEMENT tag-role (description?, tag-attribute*, tag-role*)>
<! ATTLI ST tag-role name CDATA #REQUI RED>
<I ATTLI ST tag-role st er eot ype CDATA #| MPLI ED>
<I ATTLI ST tag-role prefix CDATA #1 MPLI ED>
<I ATTLI ST tag-role t ag- nanme CDATA #| MPLI ED>
<! ATTLI ST tag-role multiplicity CDATA #REQUI RED>
<! ATTLI ST tag-role required %Bool ean; "true">
<l-- =Z========== Tag Attribute Role El enent ================ -->

o8

PATTERN/COMPONENT DESCRIPTORS

<l-- An tag-attribute-roles elenment is a section that contains
one or nore tag attribute roles. The list of tag attribute
rol es may be ordered or unordered.

tag-attribute-role A tag-attribute-role
or der ed Det er mi nes whether or not the list of

tag attribute roles nmust be mapped in
order to a tag's argunents

-->
<l ELEMENT tag-attribute-roles (tag-attribute-role+)>
<I ATTLI ST tag-attribute-role ordered 9%Bool ean; "true">

<I—A tag attribute role represents a nmarkup tag attribute.
Each tag attribute role that is defined further restricts
the markup tags that the tag role may be mapped to. Each
tag attribute role nust be napped to a valid tag attribute
before the strategy is properly inplenented.

nane Nane of the tag attribute role
val ue Val ue of the tag attribute role
const ant Det ermi nes whether or not the tag attribute

that the tag attribute role is nmapped to
nmust be constant. For exanple, a tag
attribute role with constant set to "true"
may not be mapped to a nutable tag

attribute

description Description of the tag attribute role
-->
<! ELEMENT tag-attribute-role (description?)>
<I ATTLI ST tag-attribute-role nane CDATA #REQUI RED>
<I ATTLI ST tag-attribute-role val ue CDATA #1 MPLI ED>
<I ATTLI ST tag-attribute-role const ant %Bool ean; "fal se">
<l-- ========== (Connector Role El enent ==================== -->
<l-- A connector role represents a binary relationship between

conponents. Each connector role has two end rol es that
nmust both be attached to a conponent role. Each connector
role nust be nmapped to a valid relationship before the
strategy is properly inplenmented.

nane Nane of the connector role
required Det er ni nes whether or not this

connector role is required to be filled
when the strategy i s napped

99

PATTERN/COMPONENT DESCRIPTORS

description

connector-end-rol e

-->

<! ELEMENT connector-rol e (description?,
name
required

<I ATTLI ST
<I ATTLI ST

connector-rol e
connector-rol e

Description of the connector

One end of the connector

role

rol e

connect or - end-rol e*) >
CDATA
%Bool ean

#REQUI RED>
"true">

<l-- A connector end role represents one end of a binary

rel ati onshi p between conponents.

further restricts which relationship a connector

be mapped to.

nanme

multiplicity

navi gabl e

aggregation

Narme of the connector

Each connect or

end role
rol e may

end role

Defi nes the required nunber of conponent

t he connector. The

ng nultiplicities are all owed:

roles for this end of
f ol | ow
1 - One
- \Wol e nunber
0..1 - Zero or One
0..* - Zero to Many
1..* - One to Many
#..* - \Wol e nunber
* - Many

Determ

nes whet her

or

visible to the other

Defi nes the
associ ati on

nat ur e of

changeability Defines the
(not of the conponent
it)

visibility

conponent -rol e-ref

description

>
<! ELEMENT
<l ATTLI ST
<l ATTLI ST
<! ATTLI ST
<! ATTLI ST

<! ATTLI ST

<I ATTLI ST

connector-end-rol e (description?)>

connector-end-rol e
connector-end-rol e
connector-end-rol e
connector-end-rol e

connector-end-rol e

connector-end-rol e

Defi nes the access ot her
this connector

end

Nanme of the target conponent

name
multiplicity
navi gabl e

aggregation
changeability

visibility

with the other

to Many

not this end is

this end role's
one

nmutability of the end role

role that fills

rol es have to

role

Description of the connector end role

CDATA #REQUI RED>
CDATA #REQUI RED>
%Bool ean; "true">

%Aggr egat i on;
"aggregation">

%vut abi lity;
"read-wite">
%Access; "public">

100

PATTERN/COMPONENT DESCRIPTORS

<I ATTLI ST connector-end-role target CDATA #| MPLI ED>
<l-- A conponent-role-ref element is a reference to a conponent
role.
nanespace Nanmespace of the conponent role, which is

not required if the conmponent role is
owned by the sane strategy

nane Nane of the conmponent role
-->
<! ELEMENT conponent -rol e-ref EMPTY>
<I ATTLI ST conponent -rol e-ref namespace CDATA #| MPLI ED>
<! ATTLI ST conponent-rol e-ref name CDATA #REQUI RED>

101

PATTERN/COMPONENT DESCRIPTORS

Catalog DTD

<?xm version="1.0" encodi ng="1S0O 8859-1"7?>

<I--

<I--

<l--

<l --

Copyright (c) 2001-2002 (bjectVenture Inc. Al rights
reserved.

Thi s product or docunent is protected by copyright and

di stributed under licenses restricting its use, copying,
and distribution. No part of this product or docunentation
may be reproduced in any form by any nmeans without prior
witten authorization of CbjectVenture and its |icensors,

i f any.

TH'S SOFTWARE IS PROVIDED "AS |1 S* AND ANY EXPRESSED OR

| MPLI ED WARRANTI ES, | NCLUDI NG, BUT NOT LIM TED TO, THE

| MPLI ED WARRANTI ES OF MERCHANTABI LI TY AND FI TNESS FOR A
PARTI CULAR PURPCSE ARE DI SCLAI MED. | N NO EVENT SHALL
OBJECTVENTURE I NC. BE LI ABLE FOR ANY DI RECT, | NDI RECT,

I NCI DENTAL, SPECI AL, EXEMPLARY, OR CONSEQUENTI AL DAMAGES
(I NCLUDI NG, BUT NOT LIMTED TO PROCUREMENT OF SUBSTI TUTE
@BOODS OR SERVI CES; LOSS OF USE, DATA, OR PROFITS, OR

BUSI NESS | NTERRUPTI ON) HOWEVER CAUSED AND ON ANY THEORY OF
LI ABI LI TY, WHETHER | N CONTRACT, STRICT LIABILITY, OR TORT
(1 NCLUDI NG NEGLI GENCE OR OTHERW SE) ARI SI NG I N ANY WAY OUT
OF THE USE OF TH'S SOFTWARE, EVEN | F ADVI SED OF THE
PGOSSI BI LI TY OF SUCH DAMAGE

This is the DTD defining a pattern catal og.

To support validation of your pattern catalog file,
i nclude the followi ng DOCTYPE el enent at the begi nni ng
(after the "xm " declaration):

<! DOCTYPE cat al og PUBLI C
"-// QbjectVenture//DID Catal og 1.0//EN'
"http://ww. obj ectventure.confdtds/catal og-1 0.dtd">

Version: 1.0

This entity is a reference to an external DID. It defines
a nunber of comon entity and el enent definitions that are
used here and in the other pattern DIDs.

102

PATTERN/COMPONENT DESCRIPTORS

<IENTITY % common SYSTEM " conmon. dt d" >

% onmon;
<l oo =Z========== Cata|og EESCfiptor El enent ================ -->
<l-- A catal og descriptor holds the root catal og, sets its

nanespace and provides information about it.

nanespace A space within which the root catal og nane
nust be uni que

aut hors Aut hors of the catal og

version Version information for the catal og

cat al og Root cat al og

artifacts External resources that further describe

the catalog and its contents (i.e. UM
di agrans, graphics, etc.)
-->
<l ELEMENT cat al og-descri ptor (description?, authors?, version
catal og, artifacts?)>

<I ATTLI ST cat al og-descri ptor nanmespace CDATA #REQUI RED>
<l-- =Z========= Cata|og El enent =========================== __.>
<l-- A catal og groups a nunber of related patterns and

strategi es according to sonme criteria. There is no
restriction on how they are grouped, so it could be by
domai n, conpany, abstraction level, etc. A catal og serves
as the basis for packagi ng and exchangi ng patterns and
strat egi es.

nane Nane of the catal og

description Description of the catal og

cat al ogs Nest ed cat al ogs

patterns Patterns that are included within the
cat al og

strategies Strategies that are included within the
cat al og

-->
<! ELEMENT cat al og (description?, catal ogs?, patterns?,
strategi es?)>
<! ATTLI ST catal og nane CDATA #REQUI RED>

103

PATTERN/COMPONENT DESCRIPTORS

<l-- A catalogs elenment is a section that contains one or nore
nest ed cat al ogs.

cat al og A reference to a pattern catal og
-->

<! ELEMENT cat al ogs (cat al og+) >

<l-- A patterns element is a section that contains a reference
to one or nore patterns.

pattern-ref A reference to a pattern
-->

<l ELEMENT patterns (pattern-ref+)>

<l-- Apattern-ref elenent is a reference to a pattern that is
i ncluded as part of the catal og.

nanespace Nanespace of the pattern
nane Nane of the pattern
description Description of the referenced pattern
-->
<! ELEMENT pattern-ref (description?)>
<I ATTLI ST pattern-ref nanmespace CDATA #REQUI RED>
<I ATTLI ST pattern-ref name CDATA #REQUI RED>
<l -- =Z========== Strat egy Ref er ence El enent ================ -->
<I-- A strategies element is a section that contains a
reference to one or nore strategies.
strategy-ref A reference to a strategy
-->

<l ELEMENT strategies (strategy-ref+)>

<I-- A strategy-ref element is a reference to a strategy that
is included as part of the catal og.

nanespace Nanespace of the strategy
nane Nane of the strategy
description Description of the referenced strategy

104

PATTERN/COMPONENT DESCRIPTORS

<! ELEMENT strategy-ref (description?)>
<I ATTLI ST strategy-ref nanmespace CDATA #REQUI RED>
<I ATTLI ST strategy-ref name CDATA #REQUI RED>

105

PATTERN/COMPONENT DESCRIPTORS

Component DTD

<?xm version="1.0" encodi ng="1S0O 8859-1"7?>

<I--

<I--

<I--

<l --

Copyright (c) 2001-2002 (bjectVenture Inc. Al rights
reserved.

Thi s product or docunent is protected by copyright and

di stributed under licenses restricting its use, copying,
and distribution. No part of this product or docunentation
may be reproduced in any form by any nmeans without prior
witten authorization of CbjectVenture and its |icensors,

i f any.

TH'S SOFTWARE IS PROVIDED "AS |1 S* AND ANY EXPRESSED OR

| MPLI ED WARRANTI ES, | NCLUDI NG, BUT NOT LIM TED TO, THE

| MPLI ED WARRANTI ES OF MERCHANTABI LI TY AND FI TNESS FOR A
PARTI CULAR PURPCSE ARE DI SCLAI MED. | N NO EVENT SHALL
OBJECTVENTURE I NC. BE LI ABLE FOR ANY DI RECT, | NDI RECT,

I NCI DENTAL, SPECI AL, EXEMPLARY, OR CONSEQUENTI AL DAMAGES
(I NCLUDI NG, BUT NOT LIMTED TO PROCUREMENT OF SUBSTI TUTE
@BOODS OR SERVI CES; LOSS OF USE, DATA, OR PROFITS, OR

BUSI NESS | NTERRUPTI ON) HOWEVER CAUSED AND ON ANY THEORY OF
LI ABI LI TY, WHETHER | N CONTRACT, STRICT LIABILITY, OR TORT
(1 NCLUDI NG NEGLI GENCE OR OTHERW SE) ARI SI NG I N ANY WAY OUT
OF THE USE OF TH'S SOFTWARE, EVEN | F ADVI SED OF THE
PGOSSI BI LI TY OF SUCH DAMAGE

This is the DTD defining a conponent.

To support validation of your conponent file, include the
foll owi ng DOCTYPE el ement at the beginning (after the
"xm " declaration):

<! DOCTYPE conponent PUBLIC
"-//Qbj ectVenture//DID Conponent 1.0//EN'
"http://ww. obj ect venture. coni dt ds/ conponent-1_0.dtd">

Version: 1.0

This entity is a reference to an external DID. It defines
a nunber of comon entity and el enent definitions that are
used here and in the other pattern/conponent DTDs.

106

PATTERN/COMPONENT DESCRIPTORS

<IENTITY % common SYSTEM " conmon. dt d" >

% onmon;
<l--. ========== Cbnponent El ement ===================—====== -->
<l-- A conponent represents an actual conponent. W do not

descri be a component’s interface or internals here,
because that is already done well through the particul ar
conponent standard in use as well as UML itself. Instead
we describe authorship, versioning, external artifacts,

etc.

nanespace A space within which the conponent nane
nmust be unique. This is usually a package
for Java conponents.

nane Nane of the component

type Conponent type. This will be based on
conponent stereotypes that are provided
in UML Profiles (see PCML specification
for nore detail)

description Description of the conponent

aut hors Aut hors of the component

version Version information for the conponent

keywor ds Cat egori zations of the conponent

artifacts External resources that further describe

t he conponent (i.e. UM diagrans,
graphics, etc.).

-->

<l ELEMENT conponent (description?, authors?, version
keywords?, artifacts?)>

<I ATTLI ST conponent namespace CDATA #REQUI RED>
<I ATTLI ST conponent name CDATA #REQUI RED>
<! ATTLI ST conponent type CDATA #| MPLI ED>

107

PATTERN/COMPONENT DESCRIPTORS

Strategy Instance DTD

<?xm version="1.0" encodi ng="1S0O 8859-1"7?>

<I--

<I--

<I--

<l --

Copyright (c) 2000-2002 (bjectVenture Inc. Al rights
reserved.

Thi s product or docunent is protected by copyright and

di stributed under licenses restricting its use, copying,
and distribution. No part of this product or docunentation
may be reproduced in any form by any nmeans without prior
witten authorization of CbjectVenture and its |icensors,

i f any.

TH'S SOFTWARE IS PROVIDED "AS |1 S* AND ANY EXPRESSED OR

| MPLI ED WARRANTI ES, | NCLUDI NG, BUT NOT LIM TED TO, THE

| MPLI ED WARRANTI ES OF MERCHANTABI LI TY AND FI TNESS FOR A
PARTI CULAR PURPCSE ARE DI SCLAI MED. | N NO EVENT SHALL
OBJECTVENTURE I NC. BE LI ABLE FOR ANY DI RECT, | NDI RECT,

I NCI DENTAL, SPECI AL, EXEMPLARY, OR CONSEQUENTI AL DAMAGES
(I NCLUDI NG, BUT NOT LIMTED TO PROCUREMENT OF SUBSTI TUTE
@BOODS OR SERVI CES; LOSS OF USE, DATA, OR PROFITS, OR

BUSI NESS | NTERRUPTI ON) HOWEVER CAUSED AND ON ANY THEORY OF
LI ABI LI TY, WHETHER | N CONTRACT, STRICT LIABILITY, OR TORT
(1 NCLUDI NG NEGLI GENCE OR OTHERW SE) ARI SI NG I N ANY WAY OUT
OF THE USE OF TH'S SOFTWARE, EVEN | F ADVI SED OF THE
PGOSSI BI LI TY OF SUCH DAMAGE

This is the DTD defining a conponent frameworKk.

To support validation of your inplenented strategy file,
i nclude the followi ng DOCTYPE el enent at the begi nni ng
(after the "xm " declaration):

<I DOCTYPE i strategy PUBLIC
"-//QObjectVenture//DID | Strategy 1.0//EN'
"http://ww. obj ectventure.confdtds/istrategy-1_0.dtd">

Version: 1.0

This entity is a reference to an external DID. It defines
a nunber of comon entity and el enent definitions that are
used here and in the other pattern/conponent DTDs.

108

PATTERN/COMPONENT DESCRIPTORS

<IENTITY % common SYSTEM " conmon. dt d" >

% onmon;
<l -- =Z========== Strat egy | nst ance El enent ================= -->
<I-- An istrategy elenent is an instance of a strategy. It

provi des a particul ar mappi ng of conmponents and their
elenents to all required roles of a strategy.

nanespace Nanespace of the strategy
nane Nane of the strategy
description Description of the strategy instance

conponent - r ol e- maps
Mappi ngs of conponents to conponent roles

connect or - r ol e- maps
Mappi ngs of conponent relationships to
connector roles

artifacts External resources that further describe
the instance of the strategy (i.e. UM
di agrans, graphics, etc.)
-->
<l ELEMENT i strategy (description?, conmponent-role-maps?,
connector-rol e-nmaps?, artifacts?)>

<I ATTLI ST i strat egy nanmespace CDATA #REQUI RED>
<I ATTLI ST i strat egy name CDATA #REQUI RED>
<l--. ========== Con"ponent Rol e |\/Hp El enent ================ -->
<l-- A conponent-rol e-maps elenent is a section that contains

one or nore nmappi ngs of components to conponent roles.

conponent-role-map A nappi ng of conponents to a conponent
role
-->

<! ELEMENT conponent -rol e- maps (conponent -rol e- map+) >

<l-- A conponent-role-map represents the filling of a conponent
rol e by one or nore conponents.
rol e- nane Nane of the component role
description Description of the mapping

mapped- conmponent s

109

PATTERN/COMPONENT DESCRIPTORS

Conponents that fill the role. A conponent
role may be filled by nore than one
conponent if the conmponent role’'s
multiplicity is greater than one.

attribute-rol e- maps
Mappi ngs of conponent attributes to
attribute roles

operati on-rol e- maps
Mappi ngs of conponent nethods to operation
rol es

tag-rol e-maps Mappi ngs of component markup tags to tag
rol es

-->

<! ELEMENT conponent-rol e-nap (description?, nmapped-conponents?,
attribute-rol e-maps?,
operation-rol e- maps?
t ag-rol e- maps?) >

<I ATTLI ST conponent-rol e-nmap rol e-nane CDATA #REQUI RED>

<I-- A mapped-conponents elenent is a section that contains one
or nore conponents that map to the same conponent role.

mapped- component A conmponent mapped to a conponent role
-->

<! ELEMENT mapped- conponent s (mapped- conponent +) >

<l-- A napped-conponent represents a conponent that fills a
conponent role.

nanespace Nanespace of the conmponent. This would
likely be a package nanme for a Java
conponent .
nane Nane of the conponent
-->
<! ELEMENT mapped- component EMPTY>
<! ATTLI ST mapped- conponent nanmespace CDATA #REQUI RED>
<I ATTLI ST mapped- conponent name CDATA #REQUI RED>
<l -- =Z========= Attribute Role Map El enrent ================ -->
<l-- An attribute-role-nmaps elenent is a section that contains
one or nore mappi ngs of conponent attributes to attribute
rol es.
attribute-role-map A conponent attribute filling an

attribute role

110

PATTERN/COMPONENT DESCRIPTORS

-->
<l ELEMENT attribute-rol e-nmaps (attribute-rol e-nap+)>

<l-- An attribute-role-map represents the filling of an
attribute role by one or nore component attri butes.

rol e- nane Nane of the attribute role
description Description of the nmapping

mapped-attri butes

Attributes that fill the role. An attribute
role may be filled by nore than one
conponent attribute if the attribute role’s
multiplicity is greater than one.

-->

<IELEMENT attribute-rol e-nmap (description?,

mapped- attri butes?) >
<I ATTLI ST attribute-rol e-map rol e- nane CDATA #REQUI RED>

<I-- A mapped-attributes elenent is a section that contains one
or nore conponent attributes that map to the sane
attribute role.

mapped-attri bute A conmponent attribute mapped to an
attribute role
-->

<! ELEMENT mapped-attri butes (mapped-attribute+)>

<l-- A mapped-attribute represents a conmponent attribute that
fills an attribute role.

nane Nane of the conponent attribute
-->
<l ELEMENT mapped-attri bute EMPTY>
<I ATTLI ST mapped-attribute nane CDATA #REQUI RED>
<l -- ========== (perat ion Rol e Map El emrent ================ -->
<!-- An operation-role-maps elenent is a section that contains
one or nore nappings of conponent nethods to operation
rol es.
operation-role-map A conmponent nmethod filling an
operation role
>

<! ELEMENT operation-rol e-naps (operation-rol e-nap+) >

111

PATTERN/COMPONENT DESCRIPTORS

<l-- An operation-role-map represents the filling of an
operation role by one or nore conponent nethods.

rol e- nane Nane of the operation role
description Description of the mapping
mapped- net hods Met hods that fill the role. An operation

role may be filled by nore than one
conponent nethod if the operation role’'s
multiplicity is greater than one.

-->
<l ELEMENT operation-rol e-map (description?, mapped-nethods?)>
<I ATTLI ST operation-rol e-map rol e-nane CDATA #REQUI RED>
<l-- A napped-nethods elenent is a section that contains one or
nore conponent nethods that nmap to the sane operation
role.
mapped- net hod A conponent net hod napped to an operation
role
-->

<! ELEMENT mapped- net hods (mapped- net hod+) >

<l-- A napped-nethod represents a conponent nethod that fills
an operation role.
signature Si gnature of the method
par aret er - r ol e- map

A mappi ng of a method paraneter to an
operation rol e paraneter

-->
<! ELEMENT mapped- net hod (paraneter-rol e-map*) >
<! ATTLI ST mapped- net hod si gnature CDATA #REQUI RED>
<!-- A paraneter-role-nmap represents the filling of a paraneter
role by one or nore conmponent mnethod paraneters.
rol e- nane Nane of the parameter role
par am nane Nane of the conmponent nethod paraneter
-->
<! ELEMENT paraneter-rol e-nap EMPTY>
<I ATTLI ST paraneter-rol e-map rol e-nane CDATA #REQUI RED>

<! ATTLI ST paraneter-rol e-map param nane CDATA #REQUI RED>

112

PATTERN/COMPONENT DESCRIPTORS

<l-- Atag-role-maps elenment is a section that contains one or
nore nappi ngs of conponent markup tags to tag roles.

tag-role-map A conponent markup tag filling a tag role
-->

<! ELEMENT tag-rol e-maps (tag-rol e-map+) >

<l-- Atag-role-map represents the filling of a tag role by one
or nmore conponent markup tags.

rol e-prefix Tag role library prefix or nanespace

rol e- nane Nane of the tag role

description Description of the mapping

mapped- t ags Tags that fill the role. Atag role may be

filled by nore than one conponent markup
tag if the tag role’s nultiplicity is
greater than one.

-->

<l ELEMENT tag-rol e-map (description?, napped-tags?)>

<I ATTLI ST t ag-rol e- map rol e-prefix CDATA #| MPLI ED>

<! ATTLI ST tag-rol e-nap rol e- nane CDATA #REQUI RED>

<I-- A mapped-tags elenent is a section that contains one or
nore conponent markup tags that map to the same tag role.
nmapped-t ag A conponent markup tag mapped to a tag role

-->
<l ELEMENT mapped-tags (mapped-tag+)>

<I-- A napped-tag represents a conponent narkup tag that fills
atag role.
prefix Tag library prefix or nanespace
nane Nane of the tag
tag-attri bute-rol e-map

A mappi ng of a conponent tag attribute to a
tag attribute role

-->

<! ELEMENT mapped-tag (tag-attri bute-rol e-nap*)>

<I ATTLI ST mapped-tag prefix CDATA #| MPLI ED>
<! ATTLI ST napped-tag name CDATA #REQUI RED>
<l-- Atag-attribute-role-nmap represents the filling of a tag

attribute role by one or nore conmponent markup tag
attributes.

113

PATTERN/COMPONENT DESCRIPTORS

rol e- nane Nanme of the tag attribute role

attribute-nane Nane of the conponent tag attribute
-->
<l ELEMENT tag-attribute-rol e-map EMPTY>
<I ATTLI ST tag-attribute-role-map role-nane CDATA #REQUI RED>
<I ATTLI ST tag-attribute-rol e-map
attri bute-nane CDATA #REQUI RED>

<l -- ========== Connector Rol e |\/B_p El ement ================ -->

<l-- A connector-role-maps elenent is a section that contains
one or nore nappings of conponent connectors (or
rel ati onshi ps) to connector roles.

connector-role-map A conmponent connector filling a
connector role
-->
<! ELEMENT connector-rol e-nmaps (connector-rol e- nap+) >

<!-- A connector-role-map represents the filling of a connector
rol e by a conponent connector (or relationship).

rol e- nane Nane of the connector role
description Description of the nmapping

connect or - end-r ol e- map
A component filling a connector end role
-->
<! ELEMENT connector-rol e-map (description?,
connect or - end-r ol e- map+) >
<I ATTLI ST connector-rol e-nap rol e- nane CDATA #REQUI RED>

<l-- A connector-end-rol e-map represents the filling of a
connector end role by a conponent. It essentially defines
the target conmponent and where the connector attaches
itself to a the conponent. There must only be two of these
per connector-rol e-map

rol e- nane Narme of the connector end role
description Description of the mapping
conponent - nane Target of the connector end role

conmponent - namespace
Nanespace of the conmponent

114

PATTERN/COMPONENT DESCRIPTORS

conponent - attri but e- nane

-->
<! ELEMENT
<! ATTLI ST
<l ATTLI ST
<! ATTLI ST

<I ATTLI ST

Wher e t he connect or
t he conponent

end attaches

connector-end-rol e-map (description?)>

connect or - end-r ol e- map
rol e- nane
connect or - end-r ol e- map
conponent - nanme
connect or - end-r ol e- map
conponent - namespace
connect or - end-r ol e- map
conponent - attri but e- nane

CDATA

CDATA

CDATA

CDATA

itself to

#REQUI RED>
#REQUI RED>
#REQUI RED>

#REQUI RED>

115

PATTERN/COMPONENT DESCRIPTORS

Palette DTD

<?xm version="1.0" encodi ng="1S0O 8859-1"7?>

<I--

<I--

<l--

<l --

Copyright (c) 2001-2002 (bjectVenture Inc. Al rights
reserved.

Thi s product or docunent is protected by copyright and

di stributed under licenses restricting its use, copying,
and distribution. No part of this product or docunentation
may be reproduced in any form by any nmeans without prior
witten authorization of CbjectVenture and its |icensors,

i f any.

TH'S SOFTWARE IS PROVIDED "AS |1 S* AND ANY EXPRESSED OR

| MPLI ED WARRANTI ES, | NCLUDI NG, BUT NOT LIM TED TO, THE

| MPLI ED WARRANTI ES OF MERCHANTABI LI TY AND FI TNESS FOR A
PARTI CULAR PURPCSE ARE DI SCLAI MED. | N NO EVENT SHALL
OBJECTVENTURE I NC. BE LI ABLE FOR ANY DI RECT, | NDI RECT,

I NCI DENTAL, SPECI AL, EXEMPLARY, OR CONSEQUENTI AL DAMAGES
(I NCLUDI NG, BUT NOT LIMTED TO PROCUREMENT OF SUBSTI TUTE
@BOODS OR SERVI CES; LOSS OF USE, DATA, OR PROFITS, OR

BUSI NESS | NTERRUPTI ON) HOWEVER CAUSED AND ON ANY THEORY OF
LI ABI LI TY, WHETHER | N CONTRACT, STRICT LIABILITY, OR TORT
(1 NCLUDI NG NEGLI GENCE OR OTHERW SE) ARI SI NG I N ANY WAY OUT
OF THE USE OF TH'S SOFTWARE, EVEN | F ADVI SED OF THE
PGOSSI BI LI TY OF SUCH DAMAGE

This is the DTD defining a conponent palette.

To support validation of your conponent palette file,
i nclude the followi ng DOCTYPE el enent at the begi nni ng
(after the "xm " declaration):

<! DOCTYPE pal ette PUBLIC
"-//QbjectVenture//DID Pal ette 1.0//EN'
"http://ww. obj ectventure.confdtds/palette-1 0.dtd">

Version: 1.0

This entity is a reference to an external DID. It defines
a nunber of comon entity and el enent definitions that are
used here and in the other pattern/conponent DTDs.

116

PATTERN/COMPONENT DESCRIPTORS

<IENTITY % common SYSTEM " conmon. dt d" >

% onmon;
<l-- =Z========= Pglette EESCfiptor El enent ================ -->
<l-- A palette descriptor holds the root palette, sets its

nanespace and provides information about it.

nanespace A space within which the root palette nane
nust be uni que

aut hors Aut hors of the palette

version Version information for the palette

pal ette Root palette

artifacts External resources that further describe

the palette and its contents (i.e. UW
di agrans, graphics, etc.)
-->
<l ELEMENT pal ette-descriptor (description?, authors?, version
palette, artifacts?)>

<I ATTLI ST pal ette-descri ptor nanmespace CDATA #REQUI RED>
<l -- =Z========== Pglette El enent =========================== _..>
<l-- A palette groups a nunber of related conponents according

to sonme criteria. There is no restriction on how they are
grouped, so it could be by domain, conmpany, type,

function, etc. A palette serves as the basis for packagi ng
and exchangi ng a group of reusable components and
frameworks. If instantiated strategies were included with
t he conponents or framework, then including catal ogs
contai ning the referenced patterns and strategies would
not be uncommon.

nane Nanme of the palette
description Description of the palette
pal ettes Nest ed pal ettes
conponent s Conponents that are included within the
pal ette
-->
<! ELEMENT pal ette (description?, palettes?, conponents?)>
<! ATTLI ST pal ette name CDATA #REQUI RED>

117

PATTERN/COMPONENT DESCRIPTORS

<l-- Apalettes element is a section that contains one or nore
nested pal ettes.

pal ette A reference to a conponent palette
-->

<! ELEMENT pal ettes (pal ette+)>
<l -- ========== Con"ponent Ref er ence El enent =============== -->
<l-- A conponents elenent is a section that contains a
reference to one or nore conponents.
conponent-ref A reference to a conponent

-->
<! ELEMENT conponents (conponent-ref+)>

<l-- A conponent-ref element is a reference to a conponent that
is included as part of the palette.

nanespace Nanespace of the conmponent
nane Nane of the component
description Description of the referenced conponent
-->
<! ELEMENT conponent -ref (description?)>
<! ATTLI ST conponent-ref nanespace CDATA #REQUI RED>
<I ATTLI ST conponent-ref nane CDATA #REQUI RED>

118

	Table of Contents
	Introduction
	Current state of reuse
	How this specification furthers reuse

	Overview
	Pattern Overview
	Catalog
	Pattern
	Strategy

	Component Overview
	Palette
	Component

	Roles
	Pattern Provider
	Component Provider
	Tool Provider
	Marketplace Provider
	Application Assembler

	General Elements
	Enumerated Types
	Boolean
	Access
	Aggregation
	Mutability

	URL
	Author
	Version
	Artifact
	AKA, Keyword

	Pattern Elements
	Pattern
	Consequence, Context, Force, Problem
	Solution
	Participant
	Structure, Collaboration
	Relationship
	XML Bindings

	Strategy Elements
	Strategy
	Composite Strategies
	Component Role
	Mapping Component Roles to Pattern Participants
	Attribute Role
	Operation Role
	Parameter Role
	Tag Role
	Tag Attribute Role
	Connector Role
	Connector End Role
	XML Bindings

	Catalog Elements
	Catalog
	XML Bindings

	SCML Extensions for Patterns
	Role References
	Modified <s> Tag
	Syntax

	Component Role References
	Syntax
	Example
	Constraints

	Attribute Role References
	Syntax
	Example
	Constraints

	Operation Role References
	Syntax
	Example
	Constraints

	Parameter Role References
	Syntax
	Example
	Constraints

	Tag Role References
	Syntax
	Example
	Constraints

	Tag Attribute Role References
	Syntax
	Example
	Constraints

	Connector Role References
	Syntax
	Constraints

	Connector End Role References
	Syntax
	Example
	Constraints

	Collections of Roles
	Modified <for> Tag
	Syntax

	Common Constraints
	Strategy Collections
	Component Role Collection
	Connector Role Collection

	Connector Role Collections
	Component Role Collections
	Operation Role Collection
	Attribute Role Collection
	Tag Role Collection
	Connector End Role Collection

	Operation Role Collections

	Operation Role Bodies and SCML
	Example

	Component Elements
	Component
	Mapping Roles to Components
	XML Bindings

	Palette Elements
	Palette
	XML Bindings

	UML Profiles
	Packaging Requirements
	Examples
	Pattern and Component Descriptors
	Common Elements DTD
	Pattern DTD
	Strategy DTD
	Catalog DTD
	Component DTD
	Strategy Instance DTD
	Palette DTD

