

Pattern and Component
Markup Language (PCML)

Draft 3

L I C E N S E I N F O R M A T I O N

This document and its contents are furnished "as is" for informational purposes only, and are subject to
change without notice. ObjectVenture Inc. does not represent or warrant that any product or business plans
expressed or implied will be fulfilled in any way. Any actions taken by the user of this document in
response to the document or its contents will be solely at the risk of the user.

OBJECTVENTURE MAKES NO WARRANTIES, EXPRESSED OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT OR ITS CONTENTS, AND HEREBY EXPRESSLY DISCLAIMS ANY AND ALL
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR USE OR
NON-INFRINGEMENT. IN NO EVENT SHALL OBJECTVENTURE BE HELD LIABLE FOR ANY
DIRECT, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR
ARISING FROM THE USE OF ANY PORTION OF THE INFORMATION.

Copyright © 2001-2002 by ObjectVenture Inc. All rights reserved.

This document may not be reproduced, photocopied, displayed, transmitted or otherwise copied, in whole
or in part, in any form or by any means now known or later developed, such as electronic, optical or
mechanical means, without the written agreement of ObjectVenture Inc. Any unauthorized use may be a
violation of domestic or international law.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government and its agents is subject
to the restrictions set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer
Software clause at DFARS 252.227-7013.

T R A D E M A R K S

ObjectVenture is a trademark of ObjectVenture Inc.

Sun, Sun Microsystems, the Sun logo, Java and all Java-based trademarks and logos are trademarks or
registered trademarks of Sun Microsystems, Inc.

All other product or company names mentioned are used for identification purposes only, and may be
trademarks of their respective owner.

If you have any comments concerning this document or software, please forward them to:

ObjectVenture Inc.
89 Main Street
Third Floor
Milford, MA 01757
Internet address: info@objectventure.com

 i

Table of Contents

TABLE OF CONTENTS II

INTRODUCTION 1

CURRENT STATE OF REUSE 2
HOW THIS SPECIFICATION FURTHERS REUSE 3

OVERVIEW 4

PATTERN OVERVIEW 5
COMPONENT OVERVIEW 7
ROLES 9

GENERAL ELEMENTS 11

ENUMERATED TYPES 12
URL 13
AUTHOR 14
VERSION 15
ARTIFACT 16
AKA, KEYWORD 17

PATTERN ELEMENTS 19

PATTERN 20
CONSEQUENCE, CONTEXT, FORCE, PROBLEM 22
SOLUTION 23
PARTICIPANT 24
STRUCTURE, COLLABORATION 25
RELATIONSHIP 26
XML BINDINGS 27

STRATEGY ELEMENTS 28

STRATEGY 29
COMPOSITE STRATEGIES 31
COMPONENT ROLE 31
MAPPING COMPONENT ROLES TO PATTERN PARTICIPANTS 34
ATTRIBUTE ROLE 34
OPERATION ROLE 36
PARAMETER ROLE 38
TAG ROLE 39
TAG ATTRIBUTE ROLE 41
CONNECTOR ROLE 41
CONNECTOR END ROLE 43
XML BINDINGS 44

 ii

CATALOG ELEMENTS 45

CATALOG 46
XML BINDINGS 47

SCML EXTENSIONS FOR PATTERNS 48

ROLE REFERENCES 49
COLLECTIONS OF ROLES 57
OPERATION ROLE BODIES AND SCML 61

COMPONENT ELEMENTS 63

COMPONENT 64
MAPPING ROLES TO COMPONENTS 65
XML BINDINGS 66

PALETTE ELEMENTS 67

PALETTE 68
XML BINDINGS 69

UML PROFILES 70

PACKAGING REQUIREMENTS 72

EXAMPLES 74

PATTERN AND COMPONENT DESCRIPTORS 76

COMMON ELEMENTS DTD 77
PATTERN DTD 83
STRATEGY DTD 89
CATALOG DTD 102
COMPONENT DTD 106
STRATEGY INSTANCE DTD 108
PALETTE DTD 116

iii

O V E R V I E W

Introduction
The current state of software reuse and how this
specification furthers reuse

Contents

Current state of reuse 2

How this specification furthers reuse 3

Chapter

1

1

O V E R V I E W

Current state of reuse

Companies around the world are engaged in object-oriented and component-based
development but are failing in their quest to reuse the components that they and
others have created. The problem is that developers can create components
themselves, but when they attempt to pass their work onto others, there is no
standard mechanism for having the component describe itself, what it is designed to
do, how it collaborates with other components and how its functionality may be
extended. Developers who would benefit by leveraging an existing component find
themselves tracking down the original producer to find out its inner workings. And
after trudging through such a long exercise, often the component conflicts in some
way with their needs.

A growing trend in software development is the emergence of patterns at multiple
levels of abstraction and in multiple domains of knowledge. Patterns provide a way
for system architects to convey best practices and design strategies to other
architects and software developers that must build flexible and scalable software
systems. In short, they further the idea of software design reuse.

Patterns are currently documented and exchanged using one of several simple plain
text templates, diagrams and example code. However, this method is less than ideal.
For patterns to be truly useful as a medium of reuse, approachable and available in
the general software development community, the following issues must be
addressed:

� Even if one standard template existed, the leap from a textual description to
a concrete design is enough to discourage many from effectively leveraging
patterns.

� The templates that do exist are mostly textual and do not lend themselves to
tool automation.

� Most templates offer no consistent mechanism for realizing multiple
strategies of the same pattern.

� Although the concept of a pattern catalog exists, there is no standard way of
describing one.

� There is currently no standard way to describe a component’s role in
patterns.

Patterns and components share the following needs, which are not yet fully
addressed in a standard way:

2

O V E R V I E W

� Ownership, which includes a clear statement of intellectual property rights
and licensing guidelines.

� Versioning, which is addressed by some component standards, but not by
all and not in a standard way.

� Reference or inclusions of external artifacts that further describe the pattern
or component.

� A mechanism for cataloging and packaging a number of patterns or
components.

How this specification furthers reuse

This specification allows patterns at any level of abstraction to be expressed in a
tangible, standard format. By leveraging the openness and flexibility of XML, this
technology enables architects and developers to easily and effectively describe,
package, exchange and extend their own patterns as well as those created by others.
At the same time, tool and repository providers are empowered to automate much
of this process.

This specification is aimed squarely at providing robust and intelligent tools for
pattern-driven development of software frameworks and applications. It provides an
explicit mechanism for describing how components participate in patterns, thereby
showing the author’s intent and easing the road to maintenance and reuse.
Components become self-describing and application assembly much simpler.

3

Chapter

2
O V E R V I E W

Overview
Provides a high-level description of the pattern and
component metamodel

Contents

Pattern Overview 5

Component Overview 7

Roles 9

4

O V E R V I E W

Pattern Overview

Patterns have a number of characteristics, some of which the pattern metamodel
outlined in this specification must explicitly support:

� Patterns capture proven, reusable designs and implementations that aid in
the prevention of unnecessary reinvention.

� Patterns often represent best practices that have been mined from the
collective experience of the software development community.

� Patterns describe component collaborations that provide solutions to
problems in a given context.

� Patterns exist at multiple levels of abstraction.

� Patterns address both functional and non-functional requirements.

� Patterns are arguably the most useful to system architects and developers
when used in combination to solve complex, recurring problems.

While preserving the widely used context-problem-solution form of patterns that is
often rooted in a textual description, the authors of this specification recognize the
need for a more robust description of patterns to meet the characteristics
enumerated above and in the previous chapter. A simplified graphic of the resulting
metamodel is provided in Figure 1.

PatternStrategy
realizes

0..1

0..*

Pattern
Catalog

organizes / relates

0..*

0..*

0..*

composed of

PatternStrategy
realizes

0..1

0..*

Pattern
Catalog

organizes / relates

0..*

0..*

0..*

composed of

Figure 1: Overview of Pattern Metamodel

5

O V E R V I E W

Each one of these elements is summarized below. A detailed explanation of each is
provided in later sections.

Catalog
A side effect of documenting patterns is the outgrowth of a common language used
to communicate their use. So instead of routinely getting mired down in details
when trying to express a solution to a problem, just mentioning the names of certain
patterns immediately conveys a deep description of a solution. This common
language serves as a catalyst for more productive design discussions and knowledge
transfer among architects and developers.

This notion of a common language is composed of domain-specific subsets
commonly referred to as pattern catalogs. We adopt that term here as part of the
pattern metamodel and assign to it the following functions:

� Catalogs are a grouping mechanism for a number of related patterns and
their strategies. Although patterns are usually grouped within a domain, a
catalog does not restrict groupings that span multiple domains.

� Catalogs provide a simple means of pattern classification.

� Catalogs facilitate the packaging and reuse of patterns and their strategies.

� A catalog may be composed of other catalogs.

Pattern
A pattern is a somewhat generic description of a solution provided to address one or
a common set of design problems in a certain context. This specification recognizes
a pattern as just that with no direct implementation details. In this sense, it serves as
a class of solutions. The details of a particular solution are captured in a strategy,
which is discussed later.

A pattern, then, is assigned the following functions:

� A pattern defines a context, a problem and a general solution. A solution
here is an abstract description that is not tied to any particular
implementation.

� A pattern defines participants and describes how they interact to provide a
solution.

� A pattern may reference other patterns or external artifacts.

6

O V E R V I E W

� Some patterns are not amenable to solutions that may be implemented.
Therefore, a pattern is not required to have any strategies.

Strategy
Since patterns describe general solutions to problems, there is almost always more
than one way to realize each one of them in software systems. Pattern authors
usually include code samples and maybe even a complete example of at least one
solution to aid in the use of a pattern.

We take a slightly different approach here by removing implementation details
from the pattern itself and codifying them in a strategy. Each pattern may have
multiple strategies, each of which defines one implementation of a pattern solution.
A pattern isn’t directly aware of its strategies because we do not wish to limit the
number of strategies available and the association of them to a pattern at just
creation time. It is conceivable that people other than the original author may later
discover new strategies for applying a pattern.

A strategy, then, is assigned the following functions:

� A strategy may define one of many possible implementations of a pattern
solution.

� A strategy defines one or more roles that may be mapped to concrete
components and their elements.

� A strategy provides a mechanism for constraining which components and
elements may fill each role.

� Patterns are often composed of other patterns. A strategy addresses this
“pattern nesting” by being composed of other strategies. This scalability
allows the description of large component collaborations or frameworks.

� A strategy is not required to be associated with a pattern. It may instead
serve as a building block for other strategies or as an idiom.

Component Overview

The representation of a component and a mechanism for organizing a set of them is
necessary for this specification to address the needs listed in the previous chapter. A
simplified graphic of the resulting metamodel is provided in Figure 2.

7

O V E R V I E W

ComponentStrategy
0..*

Palette

organizes

1..*

0..*

1..*

maps to
ComponentStrategy

0..*

Palette

organizes

1..*

0..*

1..*

maps to

Figure 2: Overview of Component Metamodel

Each one of these elements is summarized below. A detailed explanation of each is
provided in later sections.

Palette
The notion of a palette is widely used for organizing user interface components and,
to a much lesser extent, business components. We adopt the term here and use it to
provide a simple means of classification and organization. A palette is assigned the
following functions:

� Palettes are a grouping mechanism for a number of related components.

� Palettes provide a simple means of component classification.

� Palettes facilitate the packaging and reuse of components and frameworks.

� A palette may be composed of other palettes.

Component
Pattern strategies describe a collaboration of components that provide a solution to a
problem or that address a certain need (as described by a pattern). This specification
does not attempt to describe components themselves, because that has already been
done with some degree of success. It does describe how patterns and components
interact.

A component, then, is assigned the following functions:

� A component may fill one or more pattern strategy roles in isolation or as
part of any number of component collaborations.

8

O V E R V I E W

� A component can describe who its author is, what version it is, what it does,
and how it may be used.

Roles

This specification defines five distinct roles in the development of software
applications using patterns and components. Each of these roles adheres to a
contract that ensures its product is compatible with the others.

The packaging requirements for each role are defined in Chapter 11: Packaging
Requirements.

Pattern Provider
The Pattern Provider is the producer of patterns. This individual party is responsible
for codifying a general solution to one or more related problems in a well-defined
context. Documenting patterns is a difficult process that is typically the place of an
experienced architect of software systems who is able to leverage that experience to
identify and effectively communicate candidate patterns.

A pattern solution may have one or more different implementations, each of which
the Pattern Provider describes with a strategy. Strategies are commonly discovered
over time as a pattern is used in different situations and by different people. In this
case, the provider may choose to extend existing patterns created by another party
by adding one or more additional strategies.

The Pattern Provider may hierarchically organize or classify a number of related
patterns using catalogs. Descriptions may also be provided for common
associations between patterns that aid in their use together.

The Pattern Provider’s output generally consists of catalog JARs, which include
catalog descriptor files, pattern descriptor files and a strategy descriptor file for each
strategy the provider wishes to include for a pattern (optional). These descriptors are
required to have ‘.catalog,’ ‘.pattern’ and ‘.strategy’ extensions respectively.

Component Provider
The Component Provider is the producer of components. This individual party is
responsible for creating components and packaging them according to any
guidelines that exist for the chosen implementation technology. For example, the

9

O V E R V I E W

construction and packaging of an Enterprise JavaBean™ (EJB™) should be done in
compliance with the EJB specification.

In addition to the component itself, the Component Provider’s output is a
component descriptor that must be packaged with the component. The extension of
this descriptor file must be ‘.component.’ One descriptor for each component
interface that is implemented by the component should also be included. If a
particular component standard does not support packaging via JAR or ZIP archives,
then a palette may be used for packaging purposes.

The Component Provider may hierarchically organize or classify a number of
related components using palettes. Each palette is simply a logical container of
components, which itself may be nested in another palette.

Tool Provider
The Tool Provider is the producer of tools that leverage this specification to
automate the creation, exchange and use of patterns, components and frameworks.

Marketplace Provider
The Marketplace Provider is the producer of public and private marketplaces or
repositories for the express purpose of mining, organizing, and exchanging patterns,
components and frameworks.

Application Assembler
The Application Assembler is the producer of applications created using
prepackaged patterns and components.

10

Chapter

3
G E N E R A L E L E M E N T S

General Elements
Provides a detailed specification of general
elements used throughout the metamodel

Contents

Enumerated Types 12

URL 13

Author 14

Version 15

Artifact 16

AKA, Keyword 17

11

G E N E R A L E L E M E N T S

Enumerated Types

The following enumerated types are commonly used throughout this specification,
so we define them here to avoid duplication.

Boolean
A Boolean type represents one of two truth-values, True or False. Any attribute of
this type may have any one of the following values listed in Table 1.

Table 1: Boolean Enumerated Type Values

Value Description

true The attribute has a truth-value of True.

false The attribute has a truth-value of False.

yes The attribute has a truth-value of True.

no The attribute has a truth-value of False.

Access
An Access type represents the visibility of an element to the outside world. Any
attribute of this type may have any one of the following values listed in Table 2.

Table 2: Access Enumerated Type Values

Value Description

public The element the attribute represents is visible to any other element that
may reach it.

private The element the attribute represents is only visible to that element’s
internals.

protected The element the attribute represents is visible to that element’s internals
and to other elements it has a relationship with (including sub-elements).

12

G E N E R A L E L E M E N T S

Aggregation
An Aggregation type represents the nature of a relationship between two elements.
Any attribute of this type may have any one of the following values listed in Table
3.

Table 3: Aggregation Enumerated Type Values

Value Description

composition The source element is composed of and owns the target element in the
relationship and is responsible for its lifecycle.

aggregation The source element is composed of, but does not own, the target element
in the relationship.

none This value must be used for both ends of a peer-level relationship, where
neither element is composed of the other. It must also be used for the
target of a composition or aggregation relationship.

Mutability
A Mutability type represents the changeability of an element. Any attribute of this
type may have any one of the following values listed in Table 3.

Table 4: Mutability Enumerated Type Values

Value Description

read The element the attribute represents may be queried but not changed.

read-write The element the attribute represents may be queried and changed.

URL

A URL element represents a link with a friendly display name. It may be used to
represent an email address, a web page, etc. The attributes of a URL are defined in
Table 5.

13

G E N E R A L E L E M E N T S

Table 5: Email Attributes

Value Type Required Description

display-name String No A display name or friendly label for the
URL

address String Yes The actual URL

Author

An author represents the creator of a pattern, component, artifact, etc. and is used to
provide ownership. An author is defined by the attributes and associations
enumerated in Table 6 and Table 7 respectively.

Table 6: Author Attributes

Value Type Required Description

name String Yes Name of the author

organization String No Organization the author represents. If
the name is an actual organization, then
this attribute may be omitted.

description String Yes Description of the author

Table 7: Author Associations

Element Cardinality Required Description

URL 0..* No A URL where information pertaining to
the author, his organization, or his
works may be obtained. This may also
represent an email address.

A graphic representation of an author’s association with other elements is provided
in Figure 3.

14

G E N E R A L E L E M E N T S

Author
references

URL
1 0..*

Author
references

URL
1 0..*

Figure 3: Author Associations

Version

A version represents the state of development an element is at. Its primary purpose
is to distinguish multiple revisions of the same element.

A version is defined by the attributes and associations enumerated in Table 8 and
Table 9 respectively.

Table 8: Version Attributes

Value Type Required Description

revision String Yes Version number

date String Yes Date/time of the revision

description String No Description of the revision

copyright String No Copyright notice for the revision.

release-notes String No Notes that describe important aspects of
the revision

license String No Licensing information for the revision.

Table 9: Version Associations

Element Cardinality Required Description

Artifact 0..* No External documents or other resources
that further describe the revision

A graphic representation of a version’s association with other elements is provided
in Figure 4.

15

G E N E R A L E L E M E N T S

Artifact

An artifact represents an external file that may not be appropriately supplied in the
XML form defined in this specification. It helps to further describe what a particular
element represents or instruct in its use. Examples of an artifact include a UML
diagram (binary or XMI), a graphical image, documentation, etc.

An artifact is defined by the attributes and associations enumerated in Table 10 and
Table 11 respectively.

Table 10: Artifact Attributes

Value Type Required Description

name String Yes Name of the artifact

type String No File type of the artifact, which should be
represented by a common file extension
(i.e. html, doc, mdl)

description String No Description of the artifact

Table 11: Version Associations

Element Cardinality Required Description

Author 0..* No An author of the artifact

URL 1..* Yes Location of the artifact in the form of a
URL, which may be either relative or
absolute

Version 1 No Version information for the artifact

A graphic representation of a version’s association with other elements is provided
in Figure 4.

16

G E N E R A L E L E M E N T S

Artifact

located at

Version0..*

URL

Author
created by

1..*

10..*
Artifact

located at

Version0..*

URL

Author
created by

1..*

10..*

Figure 4: Artifact Associations

AKA, Keyword

An AKA represents another name for a pattern, strategy or component, while a
keyword is a single word or phrase that serves to classify a pattern, strategy or
component.

Both of these elements are defined by the attributes and associations enumerated in
Table 12 and Table 13 respectively.

Table 12: AKA, Keyword Attributes

Value Type Required Description

name String Yes The alternate name or keyword.

Table 13: AKA, Keyword Associations

Element Cardinality Required Description

Component 1 Yes Component that is being classified or
given another name

Pattern 1 Yes Pattern that is being classified or given
another name

Strategy 1 Yes Strategy that is being classified or
given another name

17

G E N E R A L E L E M E N T S

A graphic representation of the relationship of an AKA and keyword to other
elements is provided in Figure 5.

KeywordAKA

Pattern
classified byalso known as

Strategy KeywordAKA

Pattern
classified byalso known as

Strategy

0..*0..* 0..*0..*

ComponentComponent

Figure 5: AKA, Keyword Associations

18

Chapter

4
P A T T E R N E L E M E N T S

Pattern Elements
Provides a detailed specification of patterns

Contents

Pattern 20

Consequence, Context, Force, Problem 22

Solution 23

Participant 24

Structure, Collaboration 25

Relationship 26

XML Bindings 27

19

P A T T E R N E L E M E N T S

Pattern

A pattern is a somewhat generic description of a solution provided to address one
or a common set of problems in a certain context. Although a pattern describes a
solution, it does not put any constraints on how that solution may be realized. A
pattern may; however, describe how it relates to other patterns and even how it may
be composed of other patterns. In this way, the abstract nature of patterns is
preserved while the realization of solutions and idioms is reserved for strategies.

A pattern is defined by the attributes and associations enumerated in Table 14 and
Table 15 respectively.

Table 14: Pattern Attributes

Value Type Required Default Description

namespace String Yes -- A space within which the pattern
name must be unique

name String Yes -- Name of the pattern

abstraction String No -- Abstraction level of the pattern,
which may include such descriptions
as “Architectural" or "Design"

domain String No -- Domain the pattern is particularly
well suited for or intended for, which
may include such descriptions as
"Financial," "Telecommunication,"
"Medical," etc.

Table 15: Pattern Associations

Element Cardinality Required Description

AKA 0..* No Another name for the pattern

Artifact 0..* No An external resource that further
describes the pattern

Author 0..* No An author of the pattern

Catalog 0..* No Organizes the pattern among others

Consequence 0..* No A consequences of the pattern's use

20

P A T T E R N E L E M E N T S

Element Cardinality Required Description

Context 1 Yes Environment of the pattern

Force 1..* Yes A motivation of the pattern

Keyword 0..* No A categorization or classification of the
pattern

Pattern 0..* No A related pattern

Problem 1 Yes Problem solved by the pattern

Solution 1 Yes Solution to the problem provided by
the pattern

Strategy 0..* No An implementation of the pattern
solution

Version 1 Yes Version information for the pattern

A graphic representation of a pattern’s association with other elements is provided
in Figure 6 and Figure 7.

Pattern

Context

AKA

Force

classified by

Problem

1..*

Keyword

Consequence Solution

1 1

1

0..*0..*

0..*

pros/cons

motivated by

Version

1

Pattern

Context

AKA

Force

classified by

Problem

1..*

Keyword

Consequence Solution

1 1

1

0..*0..*

0..*

pros/cons

motivated by

Version

1

Figure 6: Pattern Associations, Part 1

21

P A T T E R N E L E M E N T S

Pattern

Catalog

Artifact

organizes

Strategy

Author

1

1

0..* 0..*

0..*

0..*

created by

realizes

0..*

1..*

references

0..*

0..*

references

Relationship

0..*

Pattern

Catalog

Artifact

organizes

Strategy

Author

1

1

0..* 0..*

0..*

0..*

created by

realizes

0..*

1..*

references

0..*

0..*

references

Relationship

0..*

Figure 7: Pattern Associations, Part 2

Consequence, Context, Force, Problem

A consequence represents a pro or con of pattern usage. It describes how a pattern
supports its objectives and the trade-offs in doing so.

A context represents the environment within which a pattern describes itself and is a
general motivation for its existence.

A force represents a motivation of a pattern. It essentially amplifies the problem a
pattern is trying to address and then serves as a constraint on the solution.

A problem represents a design need that is to be addressed by a pattern. It
essentially distinguishes the use of one pattern over another.

All four of these elements are defined by the attributes and associations enumerated
in Table 16 and Table 17 respectively.

22

P A T T E R N E L E M E N T S

Table 16: Consequence, Context, Force, and Problem Attributes

Value Type Required Default Description

description String Yes -- Description of the force, problem or
consequence

summary String No -- A title or brief overview of the
description

Table 17: Consequence, Context, Force, and Problem Associations

Element Cardinality Required Description

Pattern 1 Yes Parent pattern

A graphic representation of these elements and their association with others is
provided in Figure 6.

Solution

A solution solves the problem described in a pattern. It is composed of a number of
participants and defines the static structure and dynamic interactions of them.

A solution is defined by the attributes and associations enumerated in Table 18 and
Table 19 respectively.

Table 18: Solution Attributes

Value Type Required Default Description

description String Yes -- Description of the solution

summary String No -- A title or brief overview of the
description

Table 19: Solution Associations

Element Cardinality Required Description

23

P A T T E R N E L E M E N T S

Element Cardinality Required Description

Collaboration 1 Yes Dynamic interactions found in the
solution

Participant 0..* No A distinct role played by a component
in the solution

Structure 1 Yes Static structure of the solution

A graphic representation of a solution’s association with other elements is provided
in Figure 8.

Solution

Structure

1

Collaboration

Pattern

1

static representation of

1

behavior of
Participant

Artifact

references

references

0..*

0..*

1

1

1 0..*

Component
Role

fulfills role of

roles of

provides a

0..*

1/strategy

Solution

Structure

1

Collaboration

Pattern

1

static representation of

1

behavior of
Participant

Artifact

references

references

0..*

0..*

1

1

1 0..*

Component
Role

fulfills role of

roles of

provides a

0..*

1/strategy

Figure 8: Solution Associations

Participant

A participant represents a distinct role played by a component in the pattern
solution. Each participant describes its general characteristics but does not place any
constraints on how it may be realized.

A participant is defined by the attributes and associations enumerated in Table 20
and Table 21 respectively.

24

P A T T E R N E L E M E N T S

Table 20: Participant Attributes

Value Type Required Default Description

name String Yes -- Name of the participant, which must
be unique among the others

description String No -- Description of the participant and its
role in the solution

required Boolean No true Determines whether or not this
participant is required to complete
the solution

Table 21: Participant Associations

Element Cardinality Required Description

Component Role 0..* No A component role in a pattern strategy
that fulfills the role of the participant in
the pattern solution

Solution 1 Yes Parent solution that the structure or
behavior describes

A graphic representation of a participant’s association with other elements is
provided in Figure 8.

Structure, Collaboration

A structure represents the static interaction of participants (as in a UML class
diagram), while a collaboration represents the dynamic interaction of participants
(as in a UML sequence or collaboration diagram).

Both are defined by the attributes and associations enumerated in Table 22 and
Table 23 respectively.

Table 22: Structure, Collaboration Attributes

Value Type Required Default Description

description String Yes -- Description of the structure or
collaboration

25

P A T T E R N E L E M E N T S

Table 23: Structure, Collaboration Associations

Element Cardinality Required Description

Artifact 0..* No An external artifact that may be
referenced to further the description
(i.e. UML diagrams).

Solution 1 Yes Parent solution that the structure or
collaboration describes

A graphic representation of the relationship of a structure and collaboration to other
elements is provided in Figure 8.

Relationship

A relationship represents a relationship between two patterns. A pattern relationship
is purely descriptive, but it does have an attribute that specifies what type of
relationship it is. This element would be used to refer to a like pattern or to describe
a pattern nesting.

A relationship is defined by the attributes and associations enumerated in Table 20
and Table 21 respectively.

Table 24: Relationship Attributes

Value Type Required Default Description

summary String Yes -- A short phrase that describes the
related pattern

description String No -- Description of how the two patterns
are related

type String No “reference” Defines the type of relationship. The
following values are possible:

� like – both patterns are similar
in one way or another

� nest – related pattern is nested
in this one

� reference – a simple reference

26

P A T T E R N E L E M E N T S

Value Type Required Default Description
to another pattern

Table 25: Relationship Associations

Element Cardinality Required Description

Pattern 0..* No Parent pattern

A graphic representation of a relationship’s association with other elements is
provided in Figure 8.

XML Bindings

Each pattern is represented with an XML descriptor that has the “.pattern” file
extension. The DTD for this descriptor is provided in Pattern and Component
Descriptors. Files based on this DTD will typically be placed in a catalog JAR.
Packaging requirements for this descriptor are discussed in more detail in
Packaging Requirements.

27

Chapter

5
S T R A T E G Y E L E M E N T S

Strategy Elements
Provides a detailed specification of pattern
strategies

Contents

Strategy 29

Composite Strategies 31

Component Role 31

Mapping Component Roles to Pattern Participants 34

Attribute Role 34

Operation Role 36

Parameter Role 38

Tag Role 39

Tag Attribute Role 41

Connector Role 41

Connector End Role 43

XML Bindings 44

28

S T R A T E G Y E L E M E N T S

Strategy

A strategy represents one of many possible implementations of a pattern solution, a
building block for other strategies or an idiom. It serves as a bridge from the more
abstract notion of a pattern to the more rigid world of components. A strategy can
describe the design of a single component or a large framework of components. A
strategy is role based, and each role defines restrictions on any component or
element that may fill it. It is this role-based mechanism that gives strategies their
greatest value; reuse of a design (which the strategy codifies) is gained by plugging
in different components and elements in each role.

A strategy is defined by the attributes and associations enumerated in Table 26 and
Table 27 respectively.

Table 26: Strategy Attributes

Value Type Required Default Description

namespace String Yes -- A space within which the strategy
name must be unique

name String Yes -- Name of the strategy

description String No -- Description of the strategy

Table 27: Strategy Associations

Element Cardinality Required Description

AKA 0..* No Another name for the strategy

Artifact 0..* No External resources that further describe
the strategy

Author 0..* No An author of the strategy

Catalog 0..* No Organizes the strategy with other
strategies and patterns

Component Role 0..* No A role filled by a component

Connector Role 0..* No A role filled by a relationship between
two components

29

S T R A T E G Y E L E M E N T S

Element Cardinality Required Description

Keyword 0..* No A categorization or classification of the
strategy

Pattern 0..1 No The pattern for which the strategy
provides an implementation to its
solution

Strategy 0..* No Another strategy from which this one is
composed

Version 1 Yes Version information for the strategy

A graphic representation of a strategy’s association with other elements is provided
in Figure 9 and Figure 10.

StrategyPattern

Catalog

Artifact

0..*

0..*
0..*

1

0..*

references

organizes

realizes

Component
Role

Connector
Role

0..*

constrained by

0..*

StrategyPattern

Catalog

Artifact

0..*

0..*
0..*

1

0..*

references

organizes

realizes

Component
Role

Connector
Role

0..*

constrained by

0..*

Figure 9: Strategy Associations, Part 1

30

S T R A T E G Y E L E M E N T S

StrategyAuthor
created by

0..*

Version

1

Keyword

AKA

classifies

0..*

0..*

0..*
StrategyAuthor

created by

0..*

Version

1

Keyword

AKA

classifies

0..*

0..*

0..*

Figure 10: Strategy Associations, Part 2

Composite Strategies

A strategy may be composed of its own roles and any number of other strategies.
The roles of the other strategies then become a part of the composite strategy. This
mechanism provides the following benefits:

� Redundancy among strategies is removed. Duplicate roles among strategies
may be factored out into a separate strategy.

� A component role from a nested strategy may be linked to a pattern
participant that the composite strategy had not yet fulfilled. This is the
mechanism through which pattern nesting is achieved.

Component Role

A component role represents a plug-in point in a strategy for a component. The role
specifies an interface, so to speak, that a component must satisfy to fill the role. Any
number of components may be swapped in and out of each component role, as long
as they adhere to the specified interface.

A component role defined by the attributes and associations enumerated in Table 28
and Table 29 respectively.

31

S T R A T E G Y E L E M E N T S

Table 28: Component Role Attributes

Value Type Required Default Description

name String Yes -- Name of the component role

description String No -- Description of the component role

stereotype String No -- Defines the type of component the
component role may be mapped to (see
UML Profiles for more information)

is-interface Boolean No false Restricts the mapping of this
component role to component
interfaces only

multiplicity String No 1 Allows the role to be filled by more
than one component. This is useful in
patterns like Abstract Factory, where
the concrete factory role will be
mapped to multiple components.

The following values are available:

� 1 - One

� # - Any whole number > 1

� * - Many or more than one

required Boolean No true Determines whether or not this
component role is required to be filled
when a strategy is mapped

Table 29: Component Role Associations

Element Cardinality Required Description

Attribute Role 0..* No Child attribute role

Component Role 0..1 No An inheritance relationship with
another component role. Both roles
must have the same value for is-
interface.

If the component that fills this
component role is composed of a single
class, then it is required to subclass the
component that fills the parent
component role.

32

S T R A T E G Y E L E M E N T S

Element Cardinality Required Description

Component Role 0..* No Interfaces that this component role
implements. The associated component
roles must have is-interface set to true.

Connector End Role 0..* No Component role participates in one end
of a connector role

Operation Role 0..* No Child operation role

Participant 0..* No A pattern participant that is fulfilled by
the component role

Strategy 1 Yes Parent strategy

Tag Role 0..* No Child tag role

A graphic representation of a component role’s association with other elements is
provided in Figure 11 and Figure 12.

Component
Role

Operation
Role

0..*

Attribute
Role Tag Role

0..* 0..*

Strategy

Participant

1..*

constrained by

constrained by

0..*

Connector
End Role

targets

1 0..*

fulfills role of

1/strategy

Component
Role

Operation
Role

0..*

Attribute
Role Tag Role

0..* 0..*

Strategy

Participant

1..*

constrained by

constrained by

0..*

Connector
End Role

targets

1 0..*

fulfills role of

1/strategy

Figure 11: Component Role Associations, Part 1

33

S T R A T E G Y E L E M E N T S

Component
Role

0..*

implements

0..*

extends

Component
Role

0..*

implements

0..*

extends

Figure 12: Component Role Associations, Part 2

Mapping Component Roles to Pattern
Participants

If a strategy is providing an implementation for a pattern solution, then each pattern
participant must be linked to a strategy component role. There may be more
component roles in a strategy than there are pattern participants, so the converse is
not true. This participant-role binding provides linkages between a pattern and one
of its solution strategies. Not only does this mechanism show how a strategy relates
to a pattern; it also shows how patterns nest (see Composite Strategies).

Attribute Role

An attribute role represents an attribute of a component. Each attribute role that is
defined further restricts the components that a component role may be mapped to.
Each required attribute role must be mapped to a valid attribute before the strategy
is properly implemented.

An attribute role is defined by the attributes and associations enumerated in Table
30 and Table 31 respectively.

Table 30: Attribute Role Attributes

Value Type Required Default Description

name String Yes -- Name of the attribute role

type String No -- Type that an attribute must be to
satisfy the attribute role. Examples of
Java types include “java.lang.String"
and "boolean."

The type may be represented using a

34

S T R A T E G Y E L E M E N T S

Value Type Required Default Description
SCML substitution (see SCML
Extensions for Patterns for more
information).

description String No -- Description of the attribute role

visibility Access No public Visibility that an attribute must have to
satisfy the attribute role. For example,
if the attribute role specifies a visibility
of "public," then it may only be
mapped to a public attribute.

static Boolean No false Determines whether or not the attribute
that the attribute role is mapped to
must belong to a component or an
instance. For example, an attribute role
with static set to "true" may not be
mapped to an attribute that is owned by
an instance.

constant Boolean No false Determines whether or not the attribute
that the attribute role is mapped to
must be a constant. For example, an
attribute role with constant set to "true"
may not be mapped to a mutable
attribute.

multiplicity String No 1 Allows the role to be filled by more
than one attribute. This is useful in
patterns like Value Object, where the
role representing data will be mapped
to multiple attributes.

The following values are available:

� 1 - One

� # - Any whole number > 1

� * - Many or more than one

required Boolean No true Determines whether or not this
attribute role is required to be mapped
when its parent component role is
mapped to a component

Table 31: Attribute Role Associations

Element Cardinality Required Description

35

S T R A T E G Y E L E M E N T S

Element Cardinality Required Description

Component Role 1 Yes Parent component role.

A graphic representation of an attribute role’s association with other elements is
provided in Figure 11.

Operation Role

An operation role represents a method of a component. Each operation role that is
defined further restricts the components that a component role may be mapped to.
Each required operation role must be mapped to a valid method before the strategy
is properly implemented.

An operation role is defined by the attributes and associations enumerated in Table
32 and Table 33 respectively.

Table 32: Operation Role Attributes

Value Type Required Default Description

name String Yes -- Name of the operation role

stereotype String No -- Defines the type of method the
operation role may be mapped to (see
UML Profiles for more information)

description String No -- Description of the operation role

body String No -- Content of an operation role's body. It
may contain source code, Source Code
Macro Language (SCML), or a
combination of both (see SCML
Extensions for Patterns for more
information).

visibility Access No public Visibility that a method must have to
satisfy the operation role. For example,
if the operation role specifies a
visibility of "public", then it may only
be mapped to a public method.

static Boolean No false Determines whether or not the method
that the operation role is mapped to
must belong to a component or an

36

S T R A T E G Y E L E M E N T S

Value Type Required Default Description
instance. For example, an operation
role with static set to "true" may not be
mapped to a method that is owned by
an instance.

return-type String No -- Return type that a method must have to
satisfy the operation role. For example,
an operation role with a return type set
to "boolean" may not be mapped to a
method with a return type of "int" or
one that has no return type.

The return-type may be represented
using an SCML substitution (see
SCML Extensions for Patterns for
more information).

multiplicity String No 1 Allows the role to be filled by more
than one method. This is useful in
patterns like Factory Method, where
the actual factory method may be
mapped to multiple methods.

The following values are available:

� 1 - One

� # - Any whole number > 1

� * - Many or more than one

required Boolean No true Determines whether or not this
operation role is required to be mapped
when its parent component role is
mapped to a component

Table 33: Operation Role Associations

Element Cardinality Required Description

Component Role 1 Yes Parent component role

Parameter Role 0..* No Arguments that define part of the
operation role’s signature. The list of
parameter roles may be ordered or
unordered.

37

S T R A T E G Y E L E M E N T S

A graphic representation of an operation role’s association with other elements is
provided in Figure 13.

Operation
Role

constrained by

Parameter
Role

0..*

Component
Role

0..*

constrained byOperation
Role

constrained by

Parameter
Role

0..*

Component
Role

0..*

constrained by

Figure 13: Operation Role Associations

Parameter Role

A parameter role represents a parameter of a method. Each parameter role that is
defined further restricts the methods that the operation role may be mapped to. Each
parameter role must be mapped to a valid parameter before the strategy is properly
implemented.

A parameter role is defined by the attributes and associations enumerated in Table
34 and Table 35 respectively.

Table 34: Parameter Role Attributes

Value Type Required Default Description

name String Yes -- Name of the parameter role

type String Yes -- Type of the parameter role. Examples
of Java types include “boolean” and
"java.lang.String."

The return-type may be represented
using an SCML substitution (see
SCML Extensions for Patterns for
more information).

constant Boolean No false Determines whether or not the
parameter that the parameter role is
mapped to must be a constant. For
example, a parameter role with
constant set to "true" may not be

38

S T R A T E G Y E L E M E N T S

Value Type Required Default Description
mapped to a mutable parameter.

description String No -- Description of the parameter role

Table 35: Parameter Role Associations

Element Cardinality Required Description

Operation Role 1 Yes Parent operation role

A graphic representation of a parameter role’s association with other elements is
provided in Figure 13.

Tag Role

A tag role represents a tag in a markup component (e.g. HTML, JSP). Each tag role
that is defined further restricts the components that the component role may be
mapped to. Each tag role must be mapped to a valid tag before the strategy is
properly implemented.

A tag role is defined by the attributes and associations enumerated in Table 36 and
Table 37 respectively.

Table 36: Tag Role Attributes

Value Type Required Default Description

name String Yes -- Name of the tag role

description String No -- Description of the tag role

stereotype String No -- Defines the type of tag the tag role
may be mapped to (see UML Profiles
for more information)

prefix String No -- Default tag library prefix (for JSPs) or
a namespace

tag-name String No -- Literal name of the tag

multiplicity String No 1 Allows the role to be filled by more
than one tag

39

S T R A T E G Y E L E M E N T S

Value Type Required Default Description
than one tag

The following values are available:

� 1 - One

� # - Any whole number > 1

� * - Many or more than one

required Boolean No true Determines whether or not this tag role
is required to be mapped when its
parent component role is mapped to a
component

Table 37: Tag Role Associations

Element Cardinality Required Description

Component Role 1 Yes Parent component role

Tag Attribute 0..* No An attributes of the tag

Tag Role 0..* No Nested tag roles

A graphic representation of a tag role’s association with other elements is provided
in Figure 14.

Tag Role

properties of

Tag
Attribute

1

0..*

Component
Role

10..*

constrained by

1

0..*

constrained by

Tag Role

properties of

Tag
Attribute

1

0..*

Component
Role

10..*

constrained by

1

0..*

constrained by

Figure 14: Tag Role Associations

40

S T R A T E G Y E L E M E N T S

Tag Attribute Role

A tag attribute role represents a markup tag attribute. Each tag attribute role that is
defined further restricts the markup tags that the tag role may be mapped to. Each
tag attribute role must be mapped to a valid tag attribute before the strategy is
properly implemented.

A tag attribute is defined by the attributes and associations enumerated in Table 38
and Table 39 respectively.

Table 38: Tag Attribute Attributes

Value Type Required Default Description

name String Yes -- Name of the tag attribute

value String Yes -- Value of the tag attribute

constant Boolean No false Determines whether or not the tag
attribute that the tag attribute role is
mapped to must be a constant. For
example, a tag attribute role with
constant set to "true" may not be
mapped to a mutable tag attribute.

description String No -- Description of the tag attribute role

Table 39: Tag Attribute Associations

Element Cardinality Required Description

Tag Role 1 Yes Parent tag role

A graphic representation of a tag attribute’s association with other elements is
provided in Figure 14.

Connector Role

A connector role represents a binary relationship between components. Each
connector role has two end roles that must both be attached to a component role.
Each connector role must be mapped to a valid relationship before the strategy is
properly implemented.

41

S T R A T E G Y E L E M E N T S

A connector role is defined by the attributes and associations enumerated in Table
40 and Table 41 respectively.

Table 40: Connector Role Attributes

Value Type Required Default Description

name String Yes -- Name of the connector role.

description String No -- Description of the connector role.

required Boolean No true Determines whether or not this
connector role is required to be filled
when a strategy is mapped

Table 41: Connector Role Associations

Element Cardinality Required Description

Connector End Role 2 Yes Connector ends

Pattern Strategy 1 Yes Parent strategy

A graphic representation of a connector role’s association with other elements is
provided in Figure 15.

Connector
Role

Connector
End Role

2

Strategy
0..*

constrained by

constrained by

Component
Role

1 0..*

targets

Connector
Role

Connector
End Role

2

Strategy
0..*

constrained by

constrained by

Component
Role

1 0..*

targets

Figure 15: Connector Role Associations

42

S T R A T E G Y E L E M E N T S

Connector End Role

A connector end role represents one end of a binary relationship between
components. Each connector end role further restricts which relationship a
connector role may be mapped to.

A connector end role is defined by the attributes and associations enumerated in
Table 42 and Table 43 respectively.

Table 42: Connector End Role Attributes

Value Type Required Default Description

name String Yes -- Name of the connector end role

description String No -- Description of the connector end
role

multiplicity String Yes -- Defines the required number of
component roles for this end of
the connector. The following
multiplicities are allowed:

� 1 - One

� # - Any whole number

� 0..1 - Zero or One

� 0..* - Zero to Many

� 1..* - One to Many

� #..# - Any whole number
range

� * - Many

navigable Boolean No false Determines whether or not this
end is visible to the other

aggregation Aggregation No aggregation Defines the nature of this end
role's association with the other
one

changeability Mutability No read-write Defines the mutability of the end
role (not of the component role
that fills it)

visibility Access No public Defines the access other roles
have to this connector end

43

S T R A T E G Y E L E M E N T S

Table 43: Connector End Role Associations

Element Cardinality Required Description

Component Role 1 Yes Component role that is the target of the
connector end

Connector Role 1 Yes Parent connector

A graphic representation of a connector end role’s association with other elements
is provided in Figure 15.

XML Bindings

Each strategy is represented with an XML descriptor that has the “.strategy” file
extension. The DTD for this descriptor is provided in Pattern and Component
Descriptors. Files based on this DTD will typically be placed in a catalog JAR.
Packaging requirements for this descriptor are discussed in more detail in
Packaging Requirements.

44

Chapter

6
C A T A L O G E L E M E N T S

Catalog Elements
Provides a detailed specification of pattern catalogs

Contents

Catalog 46

XML Bindings 47

45

C A T A L O G E L E M E N T S

Catalog

A catalog groups a number of related patterns and strategies according to some
criteria. There is no restriction on how they are grouped, so it could be by domain,
company, abstraction level, etc. A catalog serves as the basis for packaging and
exchanging patterns and strategies. The physical structure of a catalog is provided
in Packaging Requirements.

A catalog is defined by the attributes and associations enumerated in Table 44 and
Table 45 respectively.

Table 44: Catalog Attributes

Value Type Required Default Description

namespace String Yes -- A space within which the catalog
name must be unique

name String Yes -- Name of the catalog

description String No -- A description of the catalog

Table 45: Catalog Associations

Element Cardinality Required Description

Artifact 0..* No External resources that further describe
the catalog

Author 0..* No An author of the catalog

Catalog 0..* No A catalog may be composed of other
catalogs

Pattern 0..* No Reference to a pattern that is provided
in the catalog

Strategy 0..* No Reference to a strategy that is provided
in the catalog

Version 1 Yes Version information for the catalog

46

S T R A T E G Y E L E M E N T S

A graphic representation of a catalog’s association with other elements is provided
in Figure 16.

Catalog

Pattern

Author

Artifact

created by

1

0..*

0..*

references

0..*

0..*

Version

1

Strategy
0..*

organizes

0..*

Catalog

Pattern

Author

Artifact

created by

1

0..*

0..*

references

0..*

0..*

Version

1

Strategy
0..*

organizes

0..*

Figure 16: Catalog Associations

XML Bindings

Each catalog is represented with an XML descriptor that has the “.catalog” file
extension. The DTD for this descriptor is provided in Pattern and Component
Descriptors. Files based on this DTD will typically be placed in a catalog JAR.
Packaging requirements for this descriptor are discussed in more detail in
Packaging Requirements.

47

Chapter

7
S C M L E X T E N S I O N S F O R P A T T E R N S

SCML Extensions for Patterns
Provides SCML tags used specifically for patterns

Contents

Role References 49

Collections of Roles 57

Operation Role Bodies and SCML 61

48

S C M L E X T E N S I O N S F O R P A T T E R N S

Role References

The roles defined by a strategy often have the need to refer to one another. For
example, an attribute role of one component role may have its type set to that of
another component role. This is a difficult matter; since we cannot possibly know
what components will ultimately fill the roles of a strategy. What we need, then, is a
way for one role to reference another without loosing the flexibility that patterns
and strategies provide.

The Source Code Macro Language (SCML) provides such a solution via its
dynamic substitution mechanism. SCML is an XML-based macro language
designed for source code generation. Source code is created via a number of SCML
macros, which consist of source code mixed with SCML tags. Many of these tags
are placeholders for substitutions that are made when a client requests that the
macros be expanded. The substitutions are made via reflection from a graph of
property-based objects that the client provides.

The substitution (or placeholder) mechanism is of particular interest here. In our
example above, the attribute role would simply use a placeholder for its type that
references the component role. When the strategy is later mapped to concrete
components, the type of the component that fills the component role will be
substituted (when mapping to existing components) or required (when using the
strategy as a component creation template) for the attribute that fills the attribute
role.

This section will define what the substitution mechanism for strategies looks like
and how it can be used. The actual substitution process that must occur during the
mapping of roles takes place via an SCML code generation implementation, as
defined in that specification. We will use the <s> tag here for referencing one role
and its properties from another and modify its syntax as necessary.

Modified <s> Tag

Syntax

<scml:s role=”value”>

 (strategy element)[/property]

</scml:s>

49

S C M L E X T E N S I O N S F O R P A T T E R N S

Where role must be a value of true or false. A value of true is the default
and results in the property being resolved from the pattern strategy itself. A value of
false results in the property being resolved from the component or component
element that is mapped to the strategy. The (strategy element) placeholder
will be explained in detail in the following sections.

Component Role References

Syntax

<scml:s>component:rolename[/property]</scml:s>

or
<scml:s>c:rolename[/property]</scml:s>

Where rolename is the name of the component role being referenced, and
property is the component role property being referenced. Any component role
property, as defined in this specification, may be accessed. If no property is
specified, the component role name property will be used.

Example

Let’s say we are filling in the body of an operation role. We have the need of
referring to a component role, named Account, to do some type casting from an
object that we are getting out of a collection. The statement looks like this:

(<scml:s role=”false”>c:Account</scml:s>) account =
(<scml:s role=”false”>c:Account</scml:s>)it.next();

When the pattern strategy is mapped, the component that is mapped to the
Account component role will have its name substituted. If the name of the mapped
component were MyAccount, the resulting statement in the method that the
operation role is mapped to would look like this:

(MyAccount) account = (MyAccount)it.next();

Constra ints

� The properties of a component role (name, stereotype, etc.) may be
referenced anywhere within an operation role body.

� The name property of a component role may be referenced from:

50

S C M L E X T E N S I O N S F O R P A T T E R N S

� The type of another attribute role

� The type of a parameter role from an operation role

� The return-type of an operation role

Attribute Role References

Syntax

<scml:s>[component:rolename;]attribute:rolename[/property]
</scml:s>

or
<scml:s>[c:rolename;]a:rolename[/property]</scml:s>

Where rolename is the name of the attribute role being referenced, and
property is the attribute role property being referenced. Any attribute role
property, as defined in this specification, may be accessed. If no property is
specified, the attribute role name property will be used. When an attribute role is
being referenced within the same component role, the prepended component role
name is optional.

Example

For our first example, we have one component role that specifies two attribute roles
that are named “frik” and “frak” respectively. The frik role has a type of
java.lang.String. Since the frak attribute will always have the same type as frik, we
set his type using the following placeholder:

<scml:s role=”false”>attribute:frik/type<scml:s>

or
<scml:s role=”false”>a:frik/type<scml:s>

When the component role is mapped to a concrete component, the type of the
attribute that fills the frik role will be required for the attribute that fills the frak role.
Since both attributes are within the same component role, there is no need to specify
which component role frik belongs to within the <s> tag.

For our second example, we have the same two attribute roles, but now they each
belong to a different component role: “componentA” and “componentB”
respectively. The same reference would then use the following placeholder:

51

S C M L E X T E N S I O N S F O R P A T T E R N S

<scml:s role=”false”>

 component:componentA;attribute:frik/type

<scml:s>

or
<scml:s role=”false”>c:componentA;a:frik/type<scml:s>

Since both attributes are no longer within the same component role, the component
role frik belongs to must be specified within the <s> tag.

Constra ints

� The properties of an attribute role (name, type, etc.) may be referenced
anywhere within an operation role body.

� The type property of an attribute role may be referenced from:

� The type of another attribute role

� The type of a parameter role from an operation role

� The return-type of an operation role

Operation Role References

Syntax

<scml:s>[component:rolename;]operation:rolename[/property]
</scml:s>

or
<scml:s>[c:rolename;]o:rolename[/property]</scml:s>

Where rolename is the name of the operation role being referenced, and
property is the operation role property being referenced. Any operation role
property, as defined in this specification, may be accessed. If no property is
specified, the operation role name property will be used.

52

S C M L E X T E N S I O N S F O R P A T T E R N S

Example

Let’s say we are filling in the body of an operation role. We have the need of
referring to another operation role contained within the same component role. The
name of this other role is doSomething. The statement looks like this:

<scml:s role=”false”>o:doSomething</scml:s>();

When the pattern strategy is mapped, the method that is mapped to the
doSomething operation role will have its name substituted. If the name of the
mapped method were processPayment, the resulting statement in the method
that the original operation role is mapped to would look like this:

processPayment();

Constra ints

� The properties of an operation role (name, stereotype, etc.) may be
referenced anywhere within an operation role body.

Parameter Role References

Syntax

<scml:s>parameter:rolename[/property]</scml:s>

or
<scml:s>p:rolename[/property]</scml:s>

Where rolename is the name of the parameter role being referenced, and
property is the parameter role property being referenced. Any parameter role
property, as defined in this specification, may be accessed. If no property is
specified, the parameter role name property will be used.

Example

Let’s say we simply wish to print out the value of a parameter that is mapped to a
parameter role named id. The statement looks like this:

System.out.println(<scml:s role=”false”>p:id</scml:s>);

53

S C M L E X T E N S I O N S F O R P A T T E R N S

When the pattern strategy is mapped, the parameter that is mapped to the id
parameter role will have its name substituted. If the name of the mapped parameter
were studentId, the resulting statement in the method that the operation role is
mapped to would look like this:

System.out.println(studentId);

Constra ints

� The properties of a parameter role (name, type, etc.) may be referenced
anywhere within an operation role body.

� Parameter roles may only be referenced within the body of the operational
role in which they are defined.

Tag Role References

Syntax

<scml:s>tag:rolename[/property]</scml:s>

or
<scml:s>t:rolename[/property]</scml:s>

Where rolename is the name of the tag role being referenced, and property is
the tag role property being referenced. Any tag role property, as defined in this
specification, may be accessed. If no property is specified, the tag role name
property will be used.

Example

TODO

Constra ints

� The properties of a tag role (name, type, etc.) may be referenced anywhere
within a tag role body.

54

S C M L E X T E N S I O N S F O R P A T T E R N S

Tag Attribute Role References

Syntax

<scml:s>tagAttribute:rolename[/property]</scml:s>

or
<scml:s>ta:rolename[/property]</scml:s>

Where rolename is the name of the tag attribute role being referenced, and
property is the tag attribute role property being referenced. Any tag attribute role
property, as defined in this specification, may be accessed. If no property is
specified, the tag attribute role name property will be used.

Example

TODO

Constra ints

� The properties of a tag attribute role (name, type, etc.) may be referenced
anywhere within a tag role body.

� Tag attribute roles may only be referenced within the body of the tag role in
which they are defined.

Connector Role References

Syntax

<scml:s>connector:rolename[/property]</scml:s>

or
<scml:s>x:rolename[/property]</scml:s>

Where rolename is the name of the connector role being referenced, and
property is the connector role property being referenced. Any connector role
property, as defined in this specification, may be accessed. If no property is
specified, the connector role name property will be used.

55

S C M L E X T E N S I O N S F O R P A T T E R N S

Const ra ints

� The properties of a connector role (name, etc.) may be referenced anywhere
within an operation role body.

Connector End Role References

Syntax

<scml:s>[component:rolename;]connectorEnd:rolename[/proper
ty]</scmls>

or
<scml:s>[c:rolename;]xe:rolename[/property]</scml:s>

Where rolename is the name of the connector end role being referenced, and
property is the connector end role property being referenced. Any connector end
role property, as defined in this specification, may be accessed. If no property is
specified, the connector end role name property will be used.

Example

Let’s say we are filling in the body of an operation role. We have the need of
referring to a connector end role, named Holdings, contained within the same
component role. The statement looks like this:

Collection holdings =

 get<scml:s role=”false”>xe:Holdings</scml:s>();

When the pattern strategy is mapped, the connector end that is mapped to the
Holdings connector end role will have its name substituted. If the name of the
mapped connector end were StockHoldings, the resulting statement in the
method that the operation role is mapped to would look like this:

Collection holdings = getStockHoldings();

Constra ints

� The properties of a connector end role (name, multiplicity, etc.) may be
referenced anywhere within an operation role body.

56

S C M L E X T E N S I O N S F O R P A T T E R N S

Collections of Roles

Until now, we have only spoken of referencing single-valued properties of pattern
strategy roles. It is possible to access, say, a collection of attribute roles from a
particular component role. What you would do with such a collection will be
discussed in the next section. This section will describe what collections are
available, how to access them and where they may be used.

The collections that are enumerated below have actually already been defined in the
pattern metamodel. We are now defining a syntax for accessing them.

Modified <for> Tag

Syntax

<scml:for var=”var” property=”property” role=”value”>

 ...

</scml:for>

The only change here to the SCML <for> tag is the addition of the role attribute,
which is explained in the Modified <s> Tag section.

Common Constraints
� Collections are only accessible inside an operation role body as part of an

SCML <for> tag.

Strategy Collections
A strategy is composed of any number of component roles and connector roles.
Both of these collections are available through the following SCML substitutions.

Component Ro le Co l lect ion

<scml:for var=”var”
property=”strategy:this/componentRoles”>

 ...

</scml:for>

57

S C M L E X T E N S I O N S F O R P A T T E R N S

Connector Ro le Co l lect ion

<scml:for var=”var” property=”s:this/connectorRoles”>

 ...

</scml:for>

These substitutions produce a collection of component or connector roles from
within the pattern strategy they are accessed from. Inside the <for> tag, the current
component or connector role can be accessed through the var attribute.

Connector Role Collections
A connector role is composed of two connector end roles. These collections are
available through the following SCML substitution:

<scml:for var=”var”

 property=”connector:name/connectorEndRoles”>

 ...

</scml:for>

or

<scml:for var=”var”

 property=”x:name/connectorEndRoles”>

 ...

</scml:for>

These substitutions produce a collection of connector end roles. Inside the <for>
tag, the current connector end role can be accessed through the var attribute. The
target connector is specified by name via the name attribute.

Component Role Collections
A component role is composed of any number of operation roles, attribute roles and
tag roles. These collections are available through the following SCML substitutions.

58

S C M L E X T E N S I O N S F O R P A T T E R N S

Operat ion Ro le Co l lect ion

<scml:for var=”var”

 property=”component:name/operationRoles”>

 ...

</scml:for>

or

<scml:for var=”var”

 property=”c:name/operationRoles”>

 ...

</scml:for>

Att r ibute Ro le Co l lect ion

<scml:for var=”var”

 property=”component:name/attributeRoles”>

 ...

</scml:for>

or

<scml:for var=”var”

 property=”c:name/attributeRoles”>

 ...

</scml:for>

Tag Ro le Co l lect ion

<scml:for var=”var”

 property=”component:name/tagRoles”>

 ...

59

S C M L E X T E N S I O N S F O R P A T T E R N S

</scml:for>

or

<scml:for var=”var”

 property=”c:name/tagRoles”>

 ...

</scml:for>

Connector End Ro le Co l lect ion

<scml:for var=”var”

 property=”component:name/connectorEndRoles”>

 ...

</scml:for>

or

<scml:for var=”var”

 property=”c:name/connectorEndRoles”>

 ...

</scml:for>

These substitutions produce a collection of roles. Inside the <for> tag, the current
role can be accessed through the var attribute.

Operation Role Collections
A component role is composed of any number of parameter roles. This collection is
available through the following SCML substitution:

<scml:for var=”var”

 property=”operation:this/parameterRoles”>

 ...

</scml:for>

60

S C M L E X T E N S I O N S F O R P A T T E R N S

or

<scml:for var=”var”

 property=”o:this/parameterRoles”>

 ...

</scml:for>

This substitution produces a collection of parameter roles. Inside the <for> tag, the
current role can be accessed through the var attribute. This collection only returns
the parameter roles for the current operation role.

Operation Role Bodies and SCML

Any operation role body may be a mixture of source code and SCML tags. When
performing substitutions, the syntax defined above in the Role References section
must be observed. This syntax replaces that which is defined for the <s> tag and
its variants in the SCML specification.

All other SCML tags may also be used, and their use is governed by the SCML
specification. This means that you may insert SCML macros (<include> tag),
use conditional logic (<if-equal> tag), perform looping (<for> tag), etc. The
only difference for using them with patterns is that all property references must
adhere to the syntax defined in the Role References and Collections of Roles
sections.

Example
Let’s say that we wish to loop through all of a component role’s (named CompA)
operation roles and perform some steps based on conditional logic. The SCML
might look like this:

<scml:for var=”role” property=”c:CompA/operationRoles”>

<scml:if-equal>

 <scml:value><scml:s>role/stereotype</scml:s></scml:value>

 <scml:value>EJBCreate</scml:value>

61

S C M L E X T E N S I O N S F O R P A T T E R N S

 <scml:then>

 System.out.println(“<scml:s>role/name</scml:s> is a

 create method!”);

 ...

 </scml:then>

 <scml:else>

 System.out.println(“<scml:s>role/name</scml:s> is not a

 create method!”);

 ...

 </scml:else>

</scml:if-equal>

62

Chapter

8
C O M P O N E N T E L E M E N T S

Component Elements
Provides a detailed specification of components

Contents

Component 64

Mapping Roles to Components 65

XML Bindings 66

63

C O M P O N E N T E L E M E N T S

Component

A component represents an actual component. We do not describe a component’s
interface or internals here, because that is already done well through the particular
component standard in use as well as UML itself. Instead, we describe authorship,
versioning, external artifacts, etc. We also describe how a component and its
elements fill strategy roles.

A component is defined by the attributes and associations enumerated in Table 46
and Table 47 respectively.

Table 46: Component Attributes

Value Type Required Default Description

namespace String Yes -- A space within which the component
name must be unique

name String Yes -- Name of the component

description String No -- A description of the component

type String No -- Component type. This will be based
on component stereotypes that are
provided in UML Profiles

Table 47: Component Associations

Element Cardinality Required Description

Artifact 0..* No An external resource that further
describe the component

Author 0..* No An author of the component

Component Role 0..* No Component role filled by the
component in a strategy

Keyword 0..* No Classifies the component

Palette 0..* No Organizes the component with other
components

Strategy 0..* No A strategy the component role
participates in

64

C O M P O N E N T E L E M E N T S

Element Cardinality Required Description

URL 1..* Yes URL to a file, JAR or ZIP that defines
part of or the entire component
implementation

Version 1 Yes Version information for the component

A graphic representation of a component’s association to other elements is provided
in Figure 17.

ComponentArtifact
references Component

Role

Keyword Version

10..*

created by

0..*0..*

classified by
0..* 1

URL

implemented with
1..*

Palette

0..*

0..*

organizes

Author

fills

0..*

ComponentArtifact
references Component

Role

Keyword Version

10..*

created by

0..*0..*

classified by
0..* 1

URL

implemented with
1..*

Palette

0..*

0..*

organizes

Author

fills

0..*

Figure 17: Component Associations

Mapping Roles to Components

When a strategy is instantiated, all required roles are mapped to one or more
components or component elements (depending on the multiplicity). Roles that are
not marked as required may or may not be mapped.

Each role serves to restrict which components may participate in a strategy. The
more component and connector roles a strategy specifies, the more restrictive it is
about which collaboration of components may represent it. Likewise, the more

65

C O M P O N E N T E L E M E N T S

attribute, operation and tag roles a component role specifies, the more restrictive it
is about what component may fill it. Roles only serve to describe the required parts
of a component that are necessary for its participation in the strategy, and they are
not intended to describe an entire component. So a component that participates in
an instantiated strategy will likely have some elements (attributes, operations, etc.)
also participating as necessary to fill the associated component role and others that
do not.

A pattern-driven development tool would restrict what components, methods, tags,
attributes, etc. (as appropriate) are available for any given role in a strategy. If a
component qualifies for filling a component role but does not have, say, an attribute
that qualifies for filling a required attribute role, the tool could offer to generate the
attribute on the component. In this way, strategies may be mapped onto existing
components, used as templates to create a collaboration of components or a mixture
of both.

XML Bindings

Each component is represented with an XML descriptor that has the “.component”
file extension. The DTD for this descriptor is provided in Pattern and Component
Descriptors. Files based on this DTD will typically be placed alongside a
components implementation classes.

Each instantiated strategy is represented with an XML descriptor that has the
“.istrategy” file extension. The DTD for this descriptor is provided in Pattern and
Component Descriptors. Files based on this DTD will typically be packaged as part
of a component palette; however, they may also be packaged with individual or a
subset of components (e.g. an EJB JAR).

Packaging requirements for both of these descriptors are discussed in more detail in
Packaging Requirements.

66

Chapter

9
P A L E T T E E L E M E N T S

Palette Elements
Provides a detailed specification of component
palettes

Contents

Palette 68

XML Bindings 69

67

P A L E T T E E L E M E N T S

Palette

A palette groups a number of related components according to some criteria. There
is no restriction on how they are grouped, so it could be by domain, company, type,
function, etc. A palette serves as the basis for packaging and exchanging a group of
reusable components and frameworks. If instantiated strategies were included with
the components or framework, then including catalogs containing the referenced
patterns and strategies would not be uncommon. The physical structure of a palette
is provided in Packaging Requirements.

A palette is defined by the attributes and associations enumerated in Table 48 and
Table 49 respectively.

Table 48: Palette Associations

Value Type Required Default Description

namespace String Yes -- A space within which the palette
name must be unique

name String Yes -- Name of the palette

description String No -- A description of the palette

Table 49: Palette Associations

Element Cardinality Required Description

Artifact 0..* No An external resource that further
describes the palette

Author 0..* No An author of the palette

Catalog 0..* No A catalog that contains patterns and
strategies pertinent to the component or
framework design

Component 0..* No A component that is provided on the
palette

Palette 0..* No A palette may be composed of other
palettes

Version 1 Yes Version information for the palette

68

P A L E T T E E L E M E N T S

A graphic representation of a palette’s association with other elements is provided
in Figure 18.

Palette

Catalog

Component

Version

Author

Artifact

1

created by

1

0..*

0..*

references

0..*

0..*

0..*

organizes

describes

0..*

Palette

Catalog

Component

Version

Author

Artifact

1

created by

1

0..*

0..*

references

0..*

0..*

0..*

organizes

describes

0..*

Figure 18: Palette Associations

XML Bindings

Each palette is represented with an XML descriptor that has the “.palette” file
extension. The DTD for this descriptor is provided in Pattern and Component
Descriptors. Files based on this DTD will typically be placed in a palette JAR.
Packaging requirements for this descriptor are discussed in more detail in
Packaging Requirements.

69

Chapter

10
U M L P R O F I L E S

UML Profiles
Provides a UML profile for patterns and defines
which other profiles may be used for stereotypes

Contents

70

U M L P R O F I L E S

TODO

71

Chapter

11
P A C K A G I N G R E Q U I R E M E N T S

Packaging Requirements
Provides requirements for packaging patterns and
components

Contents

72

P A C K A G I N G R E Q U I R E M E N T S

TODO

73

Chapter

12
E X A M P L E S

Examples
Provides non-trivial examples of PCML in action

Contents

74

P A C K A G I N G R E Q U I R E M E N T S

TODO

75

Chapter

13
P A T T E R N / C O M P O N E N T D E S C R I P T O R S

Pattern and Component
Descriptors
Provides XML DTDs for elements defined in this
specification

Contents

Common Elements DTD 77

Pattern DTD 83

Strategy DTD 89

Catalog DTD 102

Component DTD 106

Strategy Instance DTD 108

Palette DTD 116

76

P A T T E R N / C O M P O N E N T D E S C R I P T O R S

Common Elements DTD

<?xml version="1.0" encoding="ISO-8859-1"?>

<!-- Copyright (c) 2001-2002 ObjectVenture Inc. All rights
 reserved. This product or document is protected by
 copyright and distributed under licenses restricting its
 use, copying, and distribution. No part of this product
 or documentation may be reproduced in any form by any
 means without prior written authorization of ObjectVenture
 and its licensors, if any.

 THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESSED OR
 IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
 PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
 OBJECTVENTURE INC. BE LIABLE FOR ANY DIRECT, INDIRECT,
 INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
 GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
 BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
 OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 POSSIBILITY OF SUCH DAMAGE.
-->

<!-- This is the DTD defining common constructs used in the
 description of patterns and components. Standalone XML
 files derived from this DTD are not recommended. The
 parent DTD of any element that wishes to include any of
 these constructs should reference this DTD as an external
 entity.

 Version: 1.0
-->

<!-- ========== Common Types ============================== -->

<!-- The Boolean entity is the string representation of a
 boolean (true or false) variable.
-->
<!ENTITY % Boolean "(true | false | yes | no)">

<!-- A location entity is optionally one of the following:

77

P A T T E R N / C O M P O N E N T D E S C R I P T O R S

1) a relative path, delimited by "/" characters, that
defines the location of a resource relative to the
location of the XML file it is referenced within

2) or a URI path to an external resource.

-->
<!ENTITY % Location "CDATA">

<!-- The Access entity is the string representation of an
 element's visibility to others.
-->
<!ENTITY % Access "(public | private | protected)">

<!-- The Aggregation entity is the string representation of an
 element's level of aggregation over another in a
 relationship.
-->
<!ENTITY % Aggregation "(composition | aggregation | none)">

<!-- The Mutability entity is the string representation of an
 element's changeability.
-->
<!ENTITY % Mutability "(read | read-write)">

<!-- ========== Common Elements =========================== -->

<!-- A description element is an explanation of another
 element.
-->
<!ELEMENT description (#PCDATA)>

<!-- A summary element is a quick summary of another element.
-->
<!ELEMENT summary (#PCDATA)>

<!-- ========== URL Element =============================== -->

<!-- An urls element is a section that contains one or more
 url elements.

 url A URL
-->
<!ELEMENT urls (url+)>

<!-- An url element is an URL link with a friendly display

78

P A T T E R N / C O M P O N E N T D E S C R I P T O R S

 name.

 display-name Display name of the URL

 address Actual URL

 An example would be a display-name of "My Home Page" with
 an address of "www.johndoe.com."
-->
<!ELEMENT url EMPTY>
<!ATTLIST url display-name CDATA #IMPLIED>
<!ATTLIST url address CDATA #REQUIRED>

<!-- ========== AKA Element =============================== -->

<!-- An akas element is a section that contains one or more
 aka elements.

 aka An aka
-->
<!ELEMENT akas (aka+)>

<!-- An aka element is an another name that the parent element
 may be known by.
-->
<!ELEMENT aka (#PCDATA)>

<!-- ========== Keyword Element =========================== -->

<!-- A keywords element is a section that contains one or more
 keywords.

 keyword A keyword
-->
<!ELEMENT keywords (keyword+)>

<!-- A keyword element is word or phrase that is useful in
 categorizing the parent element and its characteristics.
-->
<!ELEMENT keyword (#PCDATA)>

<!-- ========== Author Element ============================ -->

<!-- An authors element is a section that contains one or more
 authors.

79

P A T T E R N / C O M P O N E N T D E S C R I P T O R S

 author An author
-->
<!ELEMENT authors (author+)>

<!-- An author element contains information identifying the
 creator of a resource.

 name Name of the author

 organization Organization the author represents. If the
 name is an actual organization, then this
 attribute may be omitted.

 description Description of the author

 url A URL where information pertaining to the
 author, his organization, or his works may
 be obtained. This includes e-mail
 addresses.
-->
<!ELEMENT author (description, url*)>
<!ATTLIST author name CDATA #REQUIRED>
<!ATTLIST author organization CDATA #IMPLIED>

<!-- ========== Version Element =========================== -->

<!-- A version element represents versioning information of a
 resource. It's primary purpose is to distinguish multiple
 revisions of the same resource.

 revision Version number

 date Date/time of the revision

 description Description of the revision

 copyright Copyright notice for this revision of the
 resource

 release-notes Notes that describe important aspects of
 this revision

 license Licensing information for this revision of
 the resource
-->
<!ELEMENT version (description, copyright?, release-notes?,
 license?, artifacts?)>
<!ATTLIST version revision CDATA #REQUIRED>
<!ATTLIST version date CDATA #IMPLIED>

80

P A T T E R N / C O M P O N E N T D E S C R I P T O R S

<!-- The copyright element provides a copyright notice.
-->
<!ELEMENT copyright (#PCDATA)>

<!-- The release-notes element provides a description of a
 resource revision.
-->
<!ELEMENT release-notes (#PCDATA)>

<!-- The license element provides licensing information for a
 resource that, among other things, defines usage
 restrictions.
-->
<!ELEMENT license (#PCDATA)>

<!-- ========== Artifact Element ========================== -->

<!-- An artifacts element is a section that contains one or
 more artifacts.

 artifact An artifact
-->
<!ELEMENT artifacts (artifact+)>

<!-- An artifact element is an external file that may not be
 appropriately supplied in XML form. When related to
 patterns, it helps to further describe a pattern or
 instruct in its use. Examples of an artifact include: UML
 diagram, graphical image, binary documentation, etc.

 name Name of the artifact

 type File type of the artifact, which should be
 represented by a common file extension
 (i.e. html, doc, mdl)

 url Location of the artifact in the form of a
 URL, which may be either relative or
 absolute

 description Description of the artifact

 author An author of the artifact

 version Version information for the artifact
-->
<!ELEMENT artifact (description?, authors?, version, urls?)>
<!ATTLIST artifact name CDATA #REQUIRED>
<!ATTLIST artifact type CDATA #REQUIRED>

81

P A T T E R N / C O M P O N E N T D E S C R I P T O R S

<!ATTLIST artifact url %Location; #REQUIRED>

82

P A T T E R N / C O M P O N E N T D E S C R I P T O R S

Pattern DTD

<?xml version="1.0" encoding="ISO-8859-1"?>

<!-- Copyright (c) 2001-2002 ObjectVenture Inc. All rights
 reserved.

 This product or document is protected by copyright and
 distributed under licenses restricting its use, copying,
 and distribution. No part of this product or documentation
 may be reproduced in any form by any means without prior
 written authorization of ObjectVenture and its licensors,
 if any.

 THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESSED OR
 IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
 PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
 OBJECTVENTURE INC. BE LIABLE FOR ANY DIRECT, INDIRECT,
 INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
 GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
 BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
 OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 POSSIBILITY OF SUCH DAMAGE.
-->

<!-- This is the DTD defining a pattern. To support validation
 of your pattern file, include the following DOCTYPE
 element at the beginning (after the "xml" declaration):

 <!DOCTYPE pattern PUBLIC
 "-//ObjectVenture//DTD Pattern 1.0//EN"
 "http://www.objectventure.com/dtds/pattern-1_0.dtd">

 Version: 1.0
-->

<!-- ========== Common Types ============================== -->

<!-- This entity is a reference to an external DTD. It defines
 a number of common entity and element definitions that are
 used here and in the other pattern DTDs.
-->
<!ENTITY % common SYSTEM "common.dtd">
%common;

83

P A T T E R N / C O M P O N E N T D E S C R I P T O R S

<!-- The RelType entity represents a type of relationship
 between two patterns.
-->
<!ENTITY % RelType "(like | nested | reference)">

<!-- ========== Pattern Element =========================== -->

<!-- A pattern is a somewhat generic description of a solution
 provided to address one or a common set of problems in a
 certain context. Although a pattern describes a solution,
 it does not put any constraints on how that solution may
 be realized. A pattern may; however, describe how it
 relates to other patterns and even how it may be composed
 of other patterns. In this way, the abstract nature of
 patterns is preserved while the realization of solutions
 and idioms is reserved for strategies.

 namespace A space within which the pattern name
 must be unique

 name Name of the pattern

 abstraction Abstraction level of the pattern, which
 may include such descriptions as
 “Architectural" or "Design”

 domain Domain the pattern is particularly well
 suited for or intended for, which may
 include such descriptions as “Financial,”
 “Telecommunication,” “Medical,” etc.

 authors Authors of the pattern

 version Version information for the pattern

 akas Other names for the pattern

 keywords Categorizations or classifications of the
 pattern

 context Environment of the pattern

 forces Motivation of the pattern

 problem The problem solved by the pattern

 solution The solution to the problem provided by
 the pattern

 consequences Consequence of the pattern's use

84

P A T T E R N / C O M P O N E N T D E S C R I P T O R S

 relationships Other related patterns

 artifacts External resources that further describes
 the pattern
-->
<!ELEMENT pattern (authors?, version, akas?, keywords?,
 context, forces, problem, solution,
 consequences, relationships?, artifacts?)>
<!ATTLIST pattern namespace CDATA #REQUIRED>
<!ATTLIST pattern name CDATA #REQUIRED>
<!ATTLIST pattern abstraction CDATA #IMPLIED>
<!ATTLIST pattern domain CDATA #IMPLIED>

<!-- ========== Context Element =========================== -->

<!-- A context represents the environment within which a
 pattern describes itself and is a general motivation for
 its existence.

 summary A title or summary of the description

 description A description of the context
-->
<!ELEMENT context (summary?, description)>

<!-- ========== Force Element ============================= -->

<!-- A forces element is a section that contains one or more
 forces.

 force A force
-->
<!ELEMENT forces (force+)>

<!-- A force represents a motivation of a pattern. It
 essentially amplifies the problem a pattern is trying to
 address and then serves as a constraint on the solution.

 summary A title of the force or a summary of the
 description

 description A description of the force
-->
<!ELEMENT force (summary?, description)>

<!-- ========== Problem Element =========================== -->

85

P A T T E R N / C O M P O N E N T D E S C R I P T O R S

<!-- A problem represents a design need that is to be addressed
 by a pattern. It essentially distinguishes the use of one
 pattern over another.

 summary Quick overview of the problem

 description More detailed explanation of the problem
-->
<!ELEMENT problem (summary?, description)>

<!-- ========== Solution Element ========================== -->

<!-- A solution solves the problem described in a pattern. It
 is composed of a number of participants and defines the
 static structure and dynamic interactions of them

 summary Quick overview of the solution

 description More detailed explanation of the
 solution

 participants Participants or roles in the solution

 structure Static structure of the solution

 collaboration Dynamic interactions found in the
 solution
-->
<!ELEMENT solution (summary?, description, participants,
 structure, collaboration)>

<!-- A structure represents the static interaction of
 participants (as in a UML class diagram) in a solution.

 description Description of the collaboration,
 including how the participants interact

 artifacts External resources that further describe
 the collaboration. This could be a UML
 class diagram.
-->
<!ELEMENT structure (description, artifacts?)>

<!-- A collaboration represents the dynamic interaction of
 participants (as in a UML sequence or collaboration
 diagram) in a solution.

 description Description of the collaboration,
 including how the participants interact

86

P A T T E R N / C O M P O N E N T D E S C R I P T O R S

 artifacts External resources that further describe
 the collaboration. This could be a UML
 sequence diagram
-->
<!ELEMENT collaboration (description, artifacts?)>

<!-- A participant represents a distinct role played by a
 component in the pattern solution. Each participant
 describes its general characteristics but does not place
 any constraints on how it may be realized.

 name Name of the participant, which must be
 unique among the others.

 required Determines whether or not this
 participant is required to complete the
 solution.

 description Description of the participant and its
 role in the solution
-->
<!ELEMENT participant (description)>
<!ATTLIST participant name CDATA #REQUIRED>
<!ATTLIST participant required %Boolean; "true">

<!-- ========== Consequence Element ======================= -->

<!-- A consequences element is a section that contains one or
 more consequences.

 consequence A consequence
-->
<!ELEMENT consequences (consequence+)>

<!-- A consequence represents a pro or con of pattern usage. It
 describes how a pattern supports its objectives and the
 trade-offs in doing so.

 summary A title of the consequence or a summary
 of the description

 description A description of the consequence
-->
<!ELEMENT consequence (summary?, description)>

<!-- ========== Relationship Element ====================== -->

87

P A T T E R N / C O M P O N E N T D E S C R I P T O R S

<!-- A relationships element is a section that contains
 references to one or more patterns that are related to
 this one.

 relationship A pattern related in some way to this
 one
-->
<!ELEMENT relationships (relationship+)>

<!-- A relationship represents a relationship between two
 patterns. A pattern relationship is purely descriptive,
 but it does have an attribute that specifies what type of
 relationship it is. This element would be used to refer to
 a like pattern or to describe a pattern nesting.

 namespace Namespace of the related pattern

 name Name of the related pattern

 type Defines the type of relationship

 summary A short phrase that describes the related
 pattern

 description Description of how the two patterns are
 related
-->
<!ELEMENT relationship (summary?, description)>
<!ATTLIST relationship namespace CDATA #REQUIRED>
<!ATTLIST relationship name CDATA #REQUIRED>
<!ATTLIST relationship type %RelType “reference”>

88

P A T T E R N / C O M P O N E N T D E S C R I P T O R S

Strategy DTD

<?xml version="1.0" encoding="ISO-8859-1"?>

<!-- Copyright (c) 2001-2002 ObjectVenture Inc. All rights
 reserved.

 This product or document is protected by copyright and
 distributed under licenses restricting its use, copying,
 and distribution. No part of this product or documentation
 may be reproduced in any form by any means without prior
 written authorization of ObjectVenture and its licensors,
 if any.

 THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESSED OR
 IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
 PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
 OBJECTVENTURE INC. BE LIABLE FOR ANY DIRECT, INDIRECT,
 INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
 GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
 BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
 OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 POSSIBILITY OF SUCH DAMAGE.
-->

<!-- This is the DTD defining a pattern strategy, which is one
 of several possible realizations or implementations of a
 pattern.

 To support validation of your pattern strategy file,
 include the following DOCTYPE element at the beginning
 (after the "xml" declaration):

 <!DOCTYPE strategy PUBLIC
 "-//ObjectVenture//DTD Strategy 1.0//EN"
 "http://www.objectventure.com/dtds/strategy-1_0.dtd">

 Version: 1.0
-->

<!-- ========== Common Types ============================== -->

<!-- This entity is a reference to an external DTD. It defines
 a number of common entity and element definitions that are

89

P A T T E R N / C O M P O N E N T D E S C R I P T O R S

 used here and in the other pattern DTDs.
-->
<!ENTITY % common SYSTEM "common.dtd">
%common;

<!-- ========== Strategy Element ========================== -->

<!-- A strategy represents one of many possible implementations
 of a pattern solution, a building block for other
 strategies or an idiom. It serves as a bridge from the
 more abstract notion of a pattern to the more rigid world
 of components. A strategy can describe the design of a
 single component or a large framework of components. A
 strategy is role based, and each role defines restrictions
 on any component or element that may fill it. It is this
 role-based mechanism that gives strategies their greatest
 value; reuse of a design (which the strategy codifies) is
 gained by plugging in different components and elements in
 each role.

 namespace A space within which the strategy name
 must be unique

 name Name of the strategy

 description Description of the strategy

 authors Authors of the strategy

 version Version information for the strategy

 akas Other names for the pattern

 keywords Categorizations or classifications of
 the strategy

 roles Roles that define the strategy

 pattern-ref The pattern that this strategy provides
 an implementation for

 strategies Other strategies that this one is
 composed of

 artifacts External resources that further
 describe the strategy (i.e. UML
 diagrams, graphics, etc.)
-->
<!ELEMENT strategy (description?, authors?, version, akas?,
 keywords?, roles, pattern-ref?,
 strategies?, artifacts?)>
<!ATTLIST strategy namespace CDATA #REQUIRED>

90

P A T T E R N / C O M P O N E N T D E S C R I P T O R S

<!ATTLIST strategy name CDATA #REQUIRED>

<!-- ========== Roles Element ============================= -->

<!-- A roles element is a section that contains one or more
 component and connector roles that describe the
 collaboration of components within a strategy.

 component-roles Component roles that the strategy is
 composed of

 connector-roles Connector roles that strategy is composed
 of
-->
<!ELEMENT roles (component-roles, connector-roles?)>

<!-- ========== Strategies Element ======================== -->

<!-- A strategies element is a section that contains one or
 more strategy references.

 strategy-ref A strategy reference
-->
<!ELEMENT strategies (strategy-ref+)>

<!-- A strategy-ref represents a reference to a pattern
 strategy.

 namespace Namespace of the strategy

 name Name of the strategy
-->
<!ELEMENT strategy-ref EMPTY>
<!ATTLIST strategy-ref namespace CDATA #REQUIRED>
<!ATTLIST strategy-ref name CDATA #REQUIRED>

<!-- ========== Parent Pattern Element ==================== -->

<!-- A pattern-ref represents the pattern for which this
 strategy provides a solution implementation. A strategy
 may realize only one pattern.

 namespace Namespace of the pattern

 name Name of the pattern
-->
<!ELEMENT pattern-ref (role-map*)>

91

P A T T E R N / C O M P O N E N T D E S C R I P T O R S

<!ATTLIST pattern-ref namespace CDATA #REQUIRED>
<!ATTLIST pattern-ref name CDATA #REQUIRED>

<!-- A role-ref represents the mapping of this component role
 to a pattern participant. This element must not be used
 unless the strategy has a parent pattern.

 role-name Name of the component role

 participant Name of the participant or pattern role
 that this component role fills
-->
<!ELEMENT role-ref EMPTY>
<!ATTLIST role-ref role-name CDATA #REQUIRED>
<!ATTLIST role-ref participant CDATA #REQUIRED>

<!-- ========== Component Role Element ==================== -->

<!-- A component role represents a plug-in point in a strategy
 for a component. The role specifies an interface, so to
 speak, that a component must satisfy to fill the role. Any
 number of components may be swapped in and out of each
 component role, as long as they adhere to the specified
 interface.

 name Name of the component role

 stereotype Defines the type of component the
 component role may be mapped to

 is-interface Restricts the mapping of this component
 role to component interfaces only

 multiplicity Allows the role to be filled by more than
 one component. This is useful in patterns
 like Abstract Factory, where the concrete
 factory role will be mapped to multiple
 components.

 The following values are available:
 1 - One
 # - Any whole number > 1
 * - Many or more than one

 required Determines whether or not this component
 role is required to be filled when a
 strategy is mapped

 description Description of the component role

 extends Inheritance relationships with other

92

P A T T E R N / C O M P O N E N T D E S C R I P T O R S

 component roles. All related roles must
 have the same value for is-interface

 If the component that fills a component
 role is composed of a single class, then
 it is required to subclass the component
 that fills the parent component role.

 implements Interfaces that this component role
 implements. The associated component
 roles must have is-interface set to true.

 attribute-roles Child attribute roles

 operation-roles Child operation roles

 tag-roles Child tag roles
-->
<!ELEMENT component-role (description?, extends?, implements?,
 attribute-roles?, operation-role?,
 tag-roles?, participant-ref?)>
<!ATTLIST component-role name CDATA #REQUIRED>
<!ATTLIST component-role stereotype CDATA #IMPLIED>
<!ATTLIST component-role is-interface %Boolean; "false">
<!ATTLIST component-role multiplicity CDATA #REQUIRED>
<!ATTLIST component-role required %Boolean; "true">

<!-- An extends element is a section that contains one or
 more components that a component must descend from
 to satisfy the component role. The associated component
 role must have is-interface set to false.

 component-role-ref A parent component
-->
<!ELEMENT extends (component-role-ref +)>

<!-- An implements element is a section that contains one or
 more component interfaces that a component must implement
 to satisfy the component role. The associated component
 role must have is-interface set to true.

 component-role-ref A component interface
-->
<!ELEMENT implements (component-role-ref +)>

<!-- An component-role-ref element represents a reference to a
 component role.

 namespace Namespace of the component role, which is
 not required if the component interface
 is owned by the same strategy

93

P A T T E R N / C O M P O N E N T D E S C R I P T O R S

 name Name of the component role
-->
<!ELEMENT component-role-ref EMPTY>
<!ATTLIST component-role-ref namespace CDATA #IMPLIED>
<!ATTLIST component-role-ref name CDATA #REQUIRED>

<!-- ========== Attribute Role Element ==================== -->

<!-- An attribute-roles element is a section that contains one
 or more attribute roles.

 attribute-role An attribute role
-->
<!ELEMENT attribute-roles (attribute-role+)>

<!-- An attribute role represents an attribute of a component.
 Each attribute role that is defined further restricts the
 components that a component role may be mapped to. Each
 required attribute role must be mapped to a valid
 attribute before the strategy is properly implemented.

 name Name of the attribute role

 type Type that an attribute must be to satisfy
 the attribute role. Examples of Java
 types include "java.lang.String" and
 "boolean." The type may be represented
 using an SCML substitution.

 stereotype Defines the type of attribute the
 attribute role may be mapped to

 visibility Visibility that an attribute must have to
 satisfy the attribute role. For example,
 if the attribute role specifies a
 visibility of "public", then it may only
 be mapped to a public attribute.

 static Determines whether or not the attribute
 that the attribute role is mapped to must
 belong to a component or an instance. For
 example, an attribute role with static
 set to "true" may not be mapped to an
 attribute that is owned by an instance.

 constant Determines whether or not the attribute
 that the attribute role is mapped to must
 be constant. For example, an attribute
 role with constant set to "true" may not
 be mapped to a mutable attribute.

94

P A T T E R N / C O M P O N E N T D E S C R I P T O R S

 multiplicity Allows the role to be filled by more than
 one attribute. This is useful in patterns
 like Value Object, where the role
 representing data will be mapped to
 multiple attributes.

 The following values are available:
 1 - One
 # - Any whole number > 1
 * - Many or more than one

 required Determines whether or not this attribute
 role is required to be mapped when its
 parent component role is mapped to a
 component

 description Description of the attribute role
-->
<!ELEMENT attribute-role (description?)>
<!ATTLIST attribute-role name CDATA #REQUIRED>
<!ATTLIST attribute-role type CDATA #IMPLIED>
<!ATTLIST attribute-role stereotype CDATA #IMPLIED>
<!ATTLIST attribute-role visibility %Access; "public">
<!ATTLIST attribute-role static %Boolean; "false">
<!ATTLIST attribute-role constant %Boolean; "false">
<!ATTLIST attribute-role multiplicity CDATA #REQUIRED>
<!ATTLIST attribute-role required %Boolean; "true">

<!-- ========== Operation Role Element ==================== -->

<!-- An operation-roles element is a section that contains one
 or more operation roles.

 operation-role An operation role
-->
<!ELEMENT operation-roles (operation-role+)>

<!-- An operation role represents a method of a component. Each
 operation role that is defined further restricts the
 components that a component role may be mapped to. Each
 required operation role must be mapped to a valid method
 before the strategy is properly implemented.

 name Name of the operation role

 stereotype Defines the type of method the operation
 role may be mapped to

 visibility Visibility that a method must have to
 satisfy the operation role. For example,

95

P A T T E R N / C O M P O N E N T D E S C R I P T O R S

 if the operation role specifies a
 visibility of "public", then it may only
 be mapped to a public method.

 static Determines whether or not the method that
 the operation role is mapped to must
 belong to a component or an instance. For
 example, an operation role with static
 set to "true" may not be mapped to a
 method that is owned by an instance.

 return-type Return type of that a method must have to
 satisfy the operation role. For example,
 an operation role with a return type set
 to "boolean" may not be mapped to a
 method with a return type of "int" or one
 that has no return type. The return-type
 may be represented using an SCML
 substitution.

 multiplicity Allows the role to be filled by more than
 one attribute. This is useful in patterns
 like Value Object, where the role
 representing data will be mapped to
 multiple attributes.

 The following values are available:
 1 - One
 # - Any whole number > 1
 * - Many or more than one

 required Determines whether or not this operation
 role is required to be mapped when its
 parent component role is mapped to a
 component

 description Description of the operation role

 parameter-roles Arguments that define part of the
 operation role’s signature

 body Body of the operation role
-->
<!ELEMENT operation-role (description?, parameter-roles?,
 body?)>
<!ATTLIST operation-role name CDATA #REQUIRED>
<!ATTLIST operation-role stereotype CDATA #IMPLIED>
<!ATTLIST operation-role visibility %Access; "public">
<!ATTLIST operation-role static %Boolean; "false">
<!ATTLIST operation-role return-type CDATA #IMPLIED>
<!ATTLIST attribute-role multiplicity CDATA #REQUIRED>
<!ATTLIST operation-role required %Boolean; "true">

96

P A T T E R N / C O M P O N E N T D E S C R I P T O R S

<!-- A body is the content of an operation role's body. It may
 contain source code, Source Code Macro Language (SCML) or
 a combination of both. Refer to the SCML specification for
 details on its use.
-->
<!ELEMENT body (#PCDATA)>

<!-- ========== Parameter Role Element ==================== -->

<!-- An parameter-roles element is a section that contains one
 or more parameter roles. The list of parameter roles may
 be ordered or unordered.

 parameter-role A parameter-role

 ordered Determines whether or not the list of
 parameter roles must be mapped in order
 to a method’s arguments
-->
<!ELEMENT parameter-roles (parameter-role+)>
<!ATTLIST parameter-role ordered %Boolean; "true">

<!-- A parameter role represents a parameter of a method. Each
 parameter role that is defined further restricts the
 methods that the operation role may be mapped to. Each
 parameter role must be mapped to a valid parameter before
 the strategy is properly implemented.

 name Name of the parameter role

 type Type of the parameter role. Examples of
 Java types include "java.lang.String" and
 "boolean." The type may be represented
 using an SCML substitution.

 constant Determines whether or not the paramter
 that the paramter role is mapped to must
 be constant. For example, a paramter
 role with constant set to "true" may not be
 mapped to a mutable paramter.

 description Description of the parameter role
-->
<!ELEMENT parameter-role (description?)>
<!ATTLIST parameter-role name CDATA #REQUIRED>
<!ATTLIST parameter-role type CDATA #REQUIRED>
<!ATTLIST parameter-role constant %Boolean; "false">

<!-- ========== Tag Role Element ========================== -->

97

P A T T E R N / C O M P O N E N T D E S C R I P T O R S

<!-- A tag-roles element is a section that contains one or more
 tag roles.

 tag-role A tag role
-->
<!ELEMENT tag-roles (tag-role+)>

<!-- A tag role represents a tag in a markup component (e.g.
 HTML, JSP). Each tag role that is defined further
 restricts the components that the component role may be
 mapped to. Each tag role must be mapped to a valid tag
 before the strategy is properly implemented.

 name Name of the tag role

 stereotype Defines the type of tag the tag role may
 be mapped to

 prefix Default tag library prefix (for JSPs) or
 a namespace

 tag-name Literal name of the tag

 multiplicity Allows the role to be filled by more than
 one tag.

 The following values are available:
 1 - One
 # - Any whole number > 1
 * - Many or more than one

 required Determines whether or not this tag role
 is required to be mapped when its parent
 component role is mapped to a component

 description Description of the tag role

 tag-attribute-role An attribute of the tag role

 tag-role A nested tag role
-->
<!ELEMENT tag-role (description?, tag-attribute*, tag-role*)>
<!ATTLIST tag-role name CDATA #REQUIRED>
<!ATTLIST tag-role stereotype CDATA #IMPLIED>
<!ATTLIST tag-role prefix CDATA #IMPLIED>
<!ATTLIST tag-role tag-name CDATA #IMPLIED>
<!ATTLIST tag-role multiplicity CDATA #REQUIRED>
<!ATTLIST tag-role required %Boolean; "true">

<!-- ========== Tag Attribute Role Element ================ -->

98

P A T T E R N / C O M P O N E N T D E S C R I P T O R S

<!-- An tag-attribute-roles element is a section that contains
 one or more tag attribute roles. The list of tag attribute
 roles may be ordered or unordered.

 tag-attribute-role A tag-attribute-role

 ordered Determines whether or not the list of
 tag attribute roles must be mapped in
 order to a tag’s arguments
-->
<!ELEMENT tag-attribute-roles (tag-attribute-role+)>
<!ATTLIST tag-attribute-role ordered %Boolean; "true">

<!— A tag attribute role represents a markup tag attribute.
 Each tag attribute role that is defined further restricts
 the markup tags that the tag role may be mapped to. Each
 tag attribute role must be mapped to a valid tag attribute
 before the strategy is properly implemented.

 name Name of the tag attribute role

 value Value of the tag attribute role

 constant Determines whether or not the tag attribute
 that the tag attribute role is mapped to
 must be constant. For example, a tag
 attribute role with constant set to "true"
 may not be mapped to a mutable tag
 attribute.

 description Description of the tag attribute role
-->
<!ELEMENT tag-attribute-role (description?)>
<!ATTLIST tag-attribute-role name CDATA #REQUIRED>
<!ATTLIST tag-attribute-role value CDATA #IMPLIED>
<!ATTLIST tag-attribute-role constant %Boolean; "false">

<!-- ========== Connector Role Element ==================== -->

<!-- A connector role represents a binary relationship between
 components. Each connector role has two end roles that
 must both be attached to a component role. Each connector
 role must be mapped to a valid relationship before the
 strategy is properly implemented.

 name Name of the connector role

 required Determines whether or not this
 connector role is required to be filled
 when the strategy is mapped

99

P A T T E R N / C O M P O N E N T D E S C R I P T O R S

 description Description of the connector role

 connector-end-role One end of the connector role
-->
<!ELEMENT connector-role (description?, connector-end-role*)>
<!ATTLIST connector-role name CDATA #REQUIRED>
<!ATTLIST connector-role required %Boolean; "true">

<!-- A connector end role represents one end of a binary
 relationship between components. Each connector end role
 further restricts which relationship a connector role may
 be mapped to.

 name Name of the connector end role

 multiplicity Defines the required number of component
 roles for this end of the connector. The
 following multiplicities are allowed:
 1 - One
 # - Whole number
 0..1 - Zero or One
 0..* - Zero to Many
 1..* - One to Many
 #..* - Whole number to Many
 * - Many

 navigable Determines whether or not this end is
 visible to the other

 aggregation Defines the nature of this end role's
 association with the other one

 changeability Defines the mutability of the end role
 (not of the component role that fills
 it)

 visibility Defines the access other roles have to
 this connector end

 component-role-ref Name of the target component role

 description Description of the connector end role
-->
<!ELEMENT connector-end-role (description?)>
<!ATTLIST connector-end-role name CDATA #REQUIRED>
<!ATTLIST connector-end-role multiplicity CDATA #REQUIRED>
<!ATTLIST connector-end-role navigable %Boolean; "true">
<!ATTLIST connector-end-role aggregation %Aggregation;
 "aggregation">
<!ATTLIST connector-end-role changeability %Mutability;
 "read-write">
<!ATTLIST connector-end-role visibility %Access; "public">

100

P A T T E R N / C O M P O N E N T D E S C R I P T O R S

<!ATTLIST connector-end-role target CDATA #IMPLIED>

<!-- A component-role-ref element is a reference to a component
 role.

 namespace Namespace of the component role, which is
 not required if the component role is
 owned by the same strategy

 name Name of the component role
-->
<!ELEMENT component-role-ref EMPTY>
<!ATTLIST component-role-ref namespace CDATA #IMPLIED>
<!ATTLIST component-role-ref name CDATA #REQUIRED>

101

P A T T E R N / C O M P O N E N T D E S C R I P T O R S

Catalog DTD

<?xml version="1.0" encoding="ISO-8859-1"?>

<!-- Copyright (c) 2001-2002 ObjectVenture Inc. All rights
 reserved.

 This product or document is protected by copyright and
 distributed under licenses restricting its use, copying,
 and distribution. No part of this product or documentation
 may be reproduced in any form by any means without prior
 written authorization of ObjectVenture and its licensors,
 if any.

 THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESSED OR
 IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
 PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
 OBJECTVENTURE INC. BE LIABLE FOR ANY DIRECT, INDIRECT,
 INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
 GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
 BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
 OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 POSSIBILITY OF SUCH DAMAGE.
-->

<!-- This is the DTD defining a pattern catalog.

 To support validation of your pattern catalog file,
 include the following DOCTYPE element at the beginning
 (after the "xml" declaration):

 <!DOCTYPE catalog PUBLIC
 "-//ObjectVenture//DTD Catalog 1.0//EN"
 "http://www.objectventure.com/dtds/catalog-1_0.dtd">

 Version: 1.0
-->

<!-- ========== Common Types ============================== -->

<!-- This entity is a reference to an external DTD. It defines
 a number of common entity and element definitions that are
 used here and in the other pattern DTDs.
-->

102

P A T T E R N / C O M P O N E N T D E S C R I P T O R S

<!ENTITY % common SYSTEM "common.dtd">
%common;

<!-- ========== Catalog Descriptor Element ================ -->

<!-- A catalog descriptor holds the root catalog, sets its
 namespace and provides information about it.

 namespace A space within which the root catalog name
 must be unique

 authors Authors of the catalog

 version Version information for the catalog

 catalog Root catalog

 artifacts External resources that further describe
 the catalog and its contents (i.e. UML
 diagrams, graphics, etc.)
-->
<!ELEMENT catalog-descriptor (description?, authors?, version,
 catalog, artifacts?)>
<!ATTLIST catalog-descriptor namespace CDATA #REQUIRED>

<!-- ========== Catalog Element =========================== -->

<!-- A catalog groups a number of related patterns and
 strategies according to some criteria. There is no
 restriction on how they are grouped, so it could be by
 domain, company, abstraction level, etc. A catalog serves
 as the basis for packaging and exchanging patterns and
 strategies.

 name Name of the catalog

 description Description of the catalog

 catalogs Nested catalogs

 patterns Patterns that are included within the
 catalog

 strategies Strategies that are included within the
 catalog
-->
<!ELEMENT catalog (description?, catalogs?, patterns?,
 strategies?)>
<!ATTLIST catalog name CDATA #REQUIRED>

103

P A T T E R N / C O M P O N E N T D E S C R I P T O R S

<!-- A catalogs element is a section that contains one or more
 nested catalogs.

 catalog A reference to a pattern catalog.
-->
<!ELEMENT catalogs (catalog+)>

<!-- ========== Pattern Reference Element ================= -->

<!-- A patterns element is a section that contains a reference
 to one or more patterns.

 pattern-ref A reference to a pattern
-->
<!ELEMENT patterns (pattern-ref+)>

<!-- A pattern-ref element is a reference to a pattern that is
 included as part of the catalog.

 namespace Namespace of the pattern

 name Name of the pattern

 description Description of the referenced pattern
-->
<!ELEMENT pattern-ref (description?)>
<!ATTLIST pattern-ref namespace CDATA #REQUIRED>
<!ATTLIST pattern-ref name CDATA #REQUIRED>

<!-- ========== Strategy Reference Element ================ -->

<!-- A strategies element is a section that contains a
 reference to one or more strategies.

 strategy-ref A reference to a strategy
-->
<!ELEMENT strategies (strategy-ref+)>

<!-- A strategy-ref element is a reference to a strategy that
 is included as part of the catalog.

 namespace Namespace of the strategy

 name Name of the strategy

 description Description of the referenced strategy
-->

104

P A T T E R N / C O M P O N E N T D E S C R I P T O R S

<!ELEMENT strategy-ref (description?)>
<!ATTLIST strategy-ref namespace CDATA #REQUIRED>
<!ATTLIST strategy-ref name CDATA #REQUIRED>

105

P A T T E R N / C O M P O N E N T D E S C R I P T O R S

Component DTD

<?xml version="1.0" encoding="ISO-8859-1"?>

<!-- Copyright (c) 2001-2002 ObjectVenture Inc. All rights
 reserved.

 This product or document is protected by copyright and
 distributed under licenses restricting its use, copying,
 and distribution. No part of this product or documentation
 may be reproduced in any form by any means without prior
 written authorization of ObjectVenture and its licensors,
 if any.

 THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESSED OR
 IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
 PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
 OBJECTVENTURE INC. BE LIABLE FOR ANY DIRECT, INDIRECT,
 INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
 GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
 BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
 OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 POSSIBILITY OF SUCH DAMAGE.
-->

<!-- This is the DTD defining a component.

 To support validation of your component file, include the
 following DOCTYPE element at the beginning (after the
 "xml" declaration):

 <!DOCTYPE component PUBLIC
 "-//ObjectVenture//DTD Component 1.0//EN"
 "http://www.objectventure.com/dtds/component-1_0.dtd">

 Version: 1.0
-->

<!-- ========== Common Types ============================== -->

<!-- This entity is a reference to an external DTD. It defines
 a number of common entity and element definitions that are
 used here and in the other pattern/component DTDs.
-->

106

P A T T E R N / C O M P O N E N T D E S C R I P T O R S

<!ENTITY % common SYSTEM "common.dtd">
%common;

<!-- ========== Component Element ========================= -->

<!-- A component represents an actual component. We do not
 describe a component’s interface or internals here,
 because that is already done well through the particular
 component standard in use as well as UML itself. Instead,
 we describe authorship, versioning, external artifacts,
 etc.

 namespace A space within which the component name
 must be unique. This is usually a package
 for Java components.

 name Name of the component

 type Component type. This will be based on
 component stereotypes that are provided
 in UML Profiles (see PCML specification
 for more detail).

 description Description of the component

 authors Authors of the component

 version Version information for the component

 keywords Categorizations of the component

 artifacts External resources that further describe
 the component (i.e. UML diagrams,
 graphics, etc.).
-->
<!ELEMENT component (description?, authors?, version,
 keywords?, artifacts?)>
<!ATTLIST component namespace CDATA #REQUIRED>
<!ATTLIST component name CDATA #REQUIRED>
<!ATTLIST component type CDATA #IMPLIED>

107

P A T T E R N / C O M P O N E N T D E S C R I P T O R S

Strategy Instance DTD

<?xml version="1.0" encoding="ISO-8859-1"?>

<!-- Copyright (c) 2000-2002 ObjectVenture Inc. All rights
 reserved.

 This product or document is protected by copyright and
 distributed under licenses restricting its use, copying,
 and distribution. No part of this product or documentation
 may be reproduced in any form by any means without prior
 written authorization of ObjectVenture and its licensors,
 if any.

 THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESSED OR
 IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
 PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
 OBJECTVENTURE INC. BE LIABLE FOR ANY DIRECT, INDIRECT,
 INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
 GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
 BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
 OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 POSSIBILITY OF SUCH DAMAGE.
-->

<!-- This is the DTD defining a component framework.

 To support validation of your implemented strategy file,
 include the following DOCTYPE element at the beginning
 (after the "xml" declaration):

 <!DOCTYPE istrategy PUBLIC
 "-//ObjectVenture//DTD IStrategy 1.0//EN"
 "http://www.objectventure.com/dtds/istrategy-1_0.dtd">

 Version: 1.0
-->

<!-- ========== Common Types ============================== -->

<!-- This entity is a reference to an external DTD. It defines
 a number of common entity and element definitions that are
 used here and in the other pattern/component DTDs.
-->

108

P A T T E R N / C O M P O N E N T D E S C R I P T O R S

<!ENTITY % common SYSTEM "common.dtd">
%common;

<!-- ========== Strategy Instance Element ================= -->

<!-- An istrategy element is an instance of a strategy. It
 provides a particular mapping of components and their
 elements to all required roles of a strategy.

 namespace Namespace of the strategy

 name Name of the strategy

 description Description of the strategy instance

 component-role-maps
 Mappings of components to component roles

 connector-role-maps
 Mappings of component relationships to
 connector roles

 artifacts External resources that further describe
 the instance of the strategy (i.e. UML
 diagrams, graphics, etc.)
-->
<!ELEMENT istrategy (description?, component-role-maps?,
 connector-role-maps?, artifacts?)>
<!ATTLIST istrategy namespace CDATA #REQUIRED>
<!ATTLIST istrategy name CDATA #REQUIRED>

<!-- ========== Component Role Map Element ================ -->

<!-- A component-role-maps element is a section that contains
 one or more mappings of components to component roles.

 component-role-map A mapping of components to a component
 role
-->
<!ELEMENT component-role-maps (component-role-map+)>

<!-- A component-role-map represents the filling of a component
 role by one or more components.

 role-name Name of the component role

 description Description of the mapping

 mapped-components

109

P A T T E R N / C O M P O N E N T D E S C R I P T O R S

 Components that fill the role. A component
 role may be filled by more than one
 component if the component role’s
 multiplicity is greater than one.

 attribute-role-maps
 Mappings of component attributes to
 attribute roles

 operation-role-maps
 Mappings of component methods to operation
 roles

 tag-role-maps Mappings of component markup tags to tag
 roles
-->
<!ELEMENT component-role-map (description?, mapped-components?,
 attribute-role-maps?,
 operation-role-maps?,
 tag-role-maps?)>
<!ATTLIST component-role-map role-name CDATA #REQUIRED>

<!-- A mapped-components element is a section that contains one
 or more components that map to the same component role.

 mapped-component A component mapped to a component role
-->
<!ELEMENT mapped-components (mapped-component+)>

<!-- A mapped-component represents a component that fills a
 component role.

 namespace Namespace of the component. This would
 likely be a package name for a Java
 component.

 name Name of the component
-->
<!ELEMENT mapped-component EMPTY>
<!ATTLIST mapped-component namespace CDATA #REQUIRED>
<!ATTLIST mapped-component name CDATA #REQUIRED>

<!-- ========== Attribute Role Map Element ================ -->

<!-- An attribute-role-maps element is a section that contains
 one or more mappings of component attributes to attribute
 roles.

 attribute-role-map A component attribute filling an
 attribute role

110

P A T T E R N / C O M P O N E N T D E S C R I P T O R S

-->
<!ELEMENT attribute-role-maps (attribute-role-map+)>

<!-- An attribute-role-map represents the filling of an
 attribute role by one or more component attributes.

 role-name Name of the attribute role

 description Description of the mapping

 mapped-attributes
 Attributes that fill the role. An attribute
 role may be filled by more than one
 component attribute if the attribute role’s
 multiplicity is greater than one.
-->
<!ELEMENT attribute-role-map (description?,
 mapped-attributes?)>
<!ATTLIST attribute-role-map role-name CDATA #REQUIRED>

<!-- A mapped-attributes element is a section that contains one
 or more component attributes that map to the same
 attribute role.

 mapped-attribute A component attribute mapped to an
 attribute role
-->
<!ELEMENT mapped-attributes (mapped-attribute+)>

<!-- A mapped-attribute represents a component attribute that
 fills an attribute role.

 name Name of the component attribute
-->
<!ELEMENT mapped-attribute EMPTY>
<!ATTLIST mapped-attribute name CDATA #REQUIRED>

<!-- ========== Operation Role Map Element ================ -->

<!-- An operation-role-maps element is a section that contains
 one or more mappings of component methods to operation
 roles.

 operation-role-map A component method filling an
 operation role
-->
<!ELEMENT operation-role-maps (operation-role-map+)>

111

P A T T E R N / C O M P O N E N T D E S C R I P T O R S

<!-- An operation-role-map represents the filling of an
 operation role by one or more component methods.

 role-name Name of the operation role

 description Description of the mapping

 mapped-methods Methods that fill the role. An operation
 role may be filled by more than one
 component method if the operation role’s
 multiplicity is greater than one.
-->
<!ELEMENT operation-role-map (description?, mapped-methods?)>
<!ATTLIST operation-role-map role-name CDATA #REQUIRED>

<!-- A mapped-methods element is a section that contains one or
 more component methods that map to the same operation
 role.

 mapped-method A component method mapped to an operation
 role
-->
<!ELEMENT mapped-methods (mapped-method+)>

<!-- A mapped-method represents a component method that fills
 an operation role.

 signature Signature of the method

 parameter-role-map
 A mapping of a method parameter to an
 operation role parameter
-->
<!ELEMENT mapped-method (parameter-role-map*)>
<!ATTLIST mapped-method signature CDATA #REQUIRED>

<!-- A parameter-role-map represents the filling of a parameter
 role by one or more component method parameters.

 role-name Name of the parameter role

 param-name Name of the component method parameter
-->
<!ELEMENT parameter-role-map EMPTY>
<!ATTLIST parameter-role-map role-name CDATA #REQUIRED>
<!ATTLIST parameter-role-map param-name CDATA #REQUIRED>

<!-- ========== Tag Role Map Element ====================== -->

112

P A T T E R N / C O M P O N E N T D E S C R I P T O R S

<!-- A tag-role-maps element is a section that contains one or
 more mappings of component markup tags to tag roles.

 tag-role-map A component markup tag filling a tag role
-->
<!ELEMENT tag-role-maps (tag-role-map+)>

<!-- A tag-role-map represents the filling of a tag role by one
 or more component markup tags.

 role-prefix Tag role library prefix or namespace

 role-name Name of the tag role

 description Description of the mapping

 mapped-tags Tags that fill the role. A tag role may be
 filled by more than one component markup
 tag if the tag role’s multiplicity is
 greater than one.
-->
<!ELEMENT tag-role-map (description?, mapped-tags?)>
<!ATTLIST tag-role-map role-prefix CDATA #IMPLIED>
<!ATTLIST tag-role-map role-name CDATA #REQUIRED>

<!-- A mapped-tags element is a section that contains one or
 more component markup tags that map to the same tag role.

 mapped-tag A component markup tag mapped to a tag role
-->
<!ELEMENT mapped-tags (mapped-tag+)>

<!-- A mapped-tag represents a component markup tag that fills
 a tag role.

 prefix Tag library prefix or namespace

 name Name of the tag

 tag-attribute-role-map
 A mapping of a component tag attribute to a
 tag attribute role
-->
<!ELEMENT mapped-tag (tag-attribute-role-map*)>
<!ATTLIST mapped-tag prefix CDATA #IMPLIED>
<!ATTLIST mapped-tag name CDATA #REQUIRED>

<!-- A tag-attribute-role-map represents the filling of a tag
 attribute role by one or more component markup tag
 attributes.

113

P A T T E R N / C O M P O N E N T D E S C R I P T O R S

 role-name Name of the tag attribute role

 attribute-name Name of the component tag attribute
-->
<!ELEMENT tag-attribute-role-map EMPTY>
<!ATTLIST tag-attribute-role-map role-name CDATA #REQUIRED>
<!ATTLIST tag-attribute-role-map
 attribute-name CDATA #REQUIRED>

<!-- ========== Connector Role Map Element ================ -->

<!-- A connector-role-maps element is a section that contains
 one or more mappings of component connectors (or
 relationships) to connector roles.

 connector-role-map A component connector filling a
 connector role
-->
<!ELEMENT connector-role-maps (connector-role-map+)>

<!-- A connector-role-map represents the filling of a connector
 role by a component connector (or relationship).

 role-name Name of the connector role

 description Description of the mapping

 connector-end-role-map
 A component filling a connector end role
-->
<!ELEMENT connector-role-map (description?,
 connector-end-role-map+)>
<!ATTLIST connector-role-map role-name CDATA #REQUIRED>

<!-- A connector-end-role-map represents the filling of a
 connector end role by a component. It essentially defines
 the target component and where the connector attaches
 itself to a the component. There must only be two of these
 per connector-role-map.

 role-name Name of the connector end role

 description Description of the mapping

 component-name Target of the connector end role

 component-namespace
 Namespace of the component

114

P A T T E R N / C O M P O N E N T D E S C R I P T O R S

 component-attribute-name
 Where the connector end attaches itself to
 the component
-->
<!ELEMENT connector-end-role-map (description?)>
<!ATTLIST connector-end-role-map
 role-name CDATA #REQUIRED>
<!ATTLIST connector-end-role-map
 component-name CDATA #REQUIRED>
<!ATTLIST connector-end-role-map
 component-namespace CDATA #REQUIRED>
<!ATTLIST connector-end-role-map
 component-attribute-name CDATA #REQUIRED>

115

P A T T E R N / C O M P O N E N T D E S C R I P T O R S

Palette DTD

<?xml version="1.0" encoding="ISO-8859-1"?>

<!-- Copyright (c) 2001-2002 ObjectVenture Inc. All rights
 reserved.

 This product or document is protected by copyright and
 distributed under licenses restricting its use, copying,
 and distribution. No part of this product or documentation
 may be reproduced in any form by any means without prior
 written authorization of ObjectVenture and its licensors,
 if any.

 THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESSED OR
 IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
 PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
 OBJECTVENTURE INC. BE LIABLE FOR ANY DIRECT, INDIRECT,
 INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
 GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
 BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
 OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 POSSIBILITY OF SUCH DAMAGE.
-->

<!-- This is the DTD defining a component palette.

 To support validation of your component palette file,
 include the following DOCTYPE element at the beginning
 (after the "xml" declaration):

 <!DOCTYPE palette PUBLIC
 "-//ObjectVenture//DTD Palette 1.0//EN"
 "http://www.objectventure.com/dtds/palette-1_0.dtd">

 Version: 1.0
-->

<!-- ========== Common Types ============================== -->

<!-- This entity is a reference to an external DTD. It defines
 a number of common entity and element definitions that are
 used here and in the other pattern/component DTDs.
-->

116

P A T T E R N / C O M P O N E N T D E S C R I P T O R S

<!ENTITY % common SYSTEM "common.dtd">
%common;

<!-- ========== Palette Descriptor Element ================ -->

<!-- A palette descriptor holds the root palette, sets its
 namespace and provides information about it.

 namespace A space within which the root palette name
 must be unique

 authors Authors of the palette

 version Version information for the palette

 palette Root palette

 artifacts External resources that further describe
 the palette and its contents (i.e. UML
 diagrams, graphics, etc.)
-->
<!ELEMENT palette-descriptor (description?, authors?, version,
 palette, artifacts?)>
<!ATTLIST palette-descriptor namespace CDATA #REQUIRED>

<!-- ========== Palette Element =========================== -->

<!-- A palette groups a number of related components according
 to some criteria. There is no restriction on how they are
 grouped, so it could be by domain, company, type,
 function, etc. A palette serves as the basis for packaging
 and exchanging a group of reusable components and
 frameworks. If instantiated strategies were included with
 the components or framework, then including catalogs
 containing the referenced patterns and strategies would
 not be uncommon.

 name Name of the palette

 description Description of the palette

 palettes Nested palettes

 components Components that are included within the
 palette
-->
<!ELEMENT palette (description?, palettes?, components?)>
<!ATTLIST palette name CDATA #REQUIRED>

117

P A T T E R N / C O M P O N E N T D E S C R I P T O R S

 118

<!-- A palettes element is a section that contains one or more
 nested palettes.

 palette A reference to a component palette
-->
<!ELEMENT palettes (palette+)>

<!-- ========== Component Reference Element =============== -->

<!-- A components element is a section that contains a
 reference to one or more components.

 component-ref A reference to a component
-->
<!ELEMENT components (component-ref+)>

<!-- A component-ref element is a reference to a component that
 is included as part of the palette.

 namespace Namespace of the component

 name Name of the component

 description Description of the referenced component
-->
<!ELEMENT component-ref (description?)>
<!ATTLIST component-ref namespace CDATA #REQUIRED>
<!ATTLIST component-ref name CDATA #REQUIRED>

	Table of Contents
	Introduction
	Current state of reuse
	How this specification furthers reuse

	Overview
	Pattern Overview
	Catalog
	Pattern
	Strategy

	Component Overview
	Palette
	Component

	Roles
	Pattern Provider
	Component Provider
	Tool Provider
	Marketplace Provider
	Application Assembler

	General Elements
	Enumerated Types
	Boolean
	Access
	Aggregation
	Mutability

	URL
	Author
	Version
	Artifact
	AKA, Keyword

	Pattern Elements
	Pattern
	Consequence, Context, Force, Problem
	Solution
	Participant
	Structure, Collaboration
	Relationship
	XML Bindings

	Strategy Elements
	Strategy
	Composite Strategies
	Component Role
	Mapping Component Roles to Pattern Participants
	Attribute Role
	Operation Role
	Parameter Role
	Tag Role
	Tag Attribute Role
	Connector Role
	Connector End Role
	XML Bindings

	Catalog Elements
	Catalog
	XML Bindings

	SCML Extensions for Patterns
	Role References
	Modified <s> Tag
	Syntax

	Component Role References
	Syntax
	Example
	Constraints

	Attribute Role References
	Syntax
	Example
	Constraints

	Operation Role References
	Syntax
	Example
	Constraints

	Parameter Role References
	Syntax
	Example
	Constraints

	Tag Role References
	Syntax
	Example
	Constraints

	Tag Attribute Role References
	Syntax
	Example
	Constraints

	Connector Role References
	Syntax
	Constraints

	Connector End Role References
	Syntax
	Example
	Constraints

	Collections of Roles
	Modified <for> Tag
	Syntax

	Common Constraints
	Strategy Collections
	Component Role Collection
	Connector Role Collection

	Connector Role Collections
	Component Role Collections
	Operation Role Collection
	Attribute Role Collection
	Tag Role Collection
	Connector End Role Collection

	Operation Role Collections

	Operation Role Bodies and SCML
	Example

	Component Elements
	Component
	Mapping Roles to Components
	XML Bindings

	Palette Elements
	Palette
	XML Bindings

	UML Profiles
	Packaging Requirements
	Examples
	Pattern and Component Descriptors
	Common Elements DTD
	Pattern DTD
	Strategy DTD
	Catalog DTD
	Component DTD
	Strategy Instance DTD
	Palette DTD

